Drag Racing 1/4 Mile times 0-60 Dyno Fast Cars Muscle Cars

4g63 Balance Shaft Elimination - bearing modification

This is the first part of a two part series about balance shaft elimination on 4g series engines. This video details the bearings, the other video will cover the front case modifications. I've already got a low-def video of the front case mods, and I plan to re-shoot that one in HD when I'm in the assembly phase. It's linked in the video. The balance shafts are designed to cancel out harmonic vibrations caused by combustion and the spinning rotating assembly. They may offer a greater degree of comfort to the driver and passengers, but with that comfort comes a price. Often, when a 4g63 timing belt gives up, it's because the balance shaft belt breaks or comes loose and takes the timing belt out with it. When that happens, it can total your pistons, valves, damage the crankshaft, wrist pins, timing belt tensioner and crank angle sensor. Basically, it can total your motor. The balance shafts also have a combined weigh over 10 lbs and both are driven off the timing belt making them additional and heavy rotating mass. If you've got a lightweight flywheel but still have balance shafts, you have your priorities mixed up. So here's what you do with the bearings. It's easy. You can do this at home. You CAN do it with the motor in the car, BUT DON'T. You must enjoy punishment to do this like that. The end result will slightly increase your oil pressure, but usually not enough to cause concern unless you have a full-circumference bearing turbo, ball bearing turbo--with your oil feed coming off the oil filter housing. The head feed would be better in that case because it's regulated at 15 PSI.


More Videos...

6&7-Bolt 4g63 Front Case & Oil Pump Rebuild
Here we disassemble, clean, inspect and rebuild both popular 4g63 front cases. This is not difficult, you just need to know what to look for. Something else that happens in this video is the analysis of one of the factors that caused my 7-bolt engine to fail. It wasn't the only cause, and we'll talk about that later, but left to its own devices and without the other contributing factors, it would have been the only cause.

4g63 Block Oil Gallery Mod
This modification is intended to improve your 4g series engine's oil delivery. People frequently discover large chunks of flash in their engine's main oil gallery. It's because the galleries are part of the cast, they're not machined into the block. There is also a very rough sharp edge where the main oil gallery is bored into the block, and oil must make a slightly greater-than 90° turn in order to begin its course to the parts it lubricates. Both of these conditions cause turbulence in the oil flow. My goal in this video is to eliminate as much of that as I can. This is a cheap and easy modification if you have the tools, and the patience. Any engine with cast-in oil galleries could probably benefit from this. Be careful not to cut into the high pressure oil gallery or else you will circulate un-filtered oil to the #1 main, oil pump, and rear balance shaft. You will also deprive the rest of the engine the oil pressure it needs to operate. So in short, punch a hole in that and it's trash. I did this my way, everyone may choose to do this a different way. I just wanted to make this video to raise awareness. Also, there's a great thread on DSMtuners about this. Pictures and everything. Written by a machinist and friend of the DSM community. Go give him some reps because he's posted a lot of great info about the DSM oil system over the years. http://www.dsmtuners.com/forums/articles-engine-fuel/452546-4g63-block-oili ng-mod.html

How to port and polish a turbo exhaust housing
I'll fill this in later. The "book" I typed in this field before didn't save. Come back later if you want to read more about the theories behind porting and polishing.

Crankshaft Refurbishing
Many of you have seen this one before. I apologize if bringing it back offends anyone. Domestickilla gave me a crankshaft, and it's a nice one that I want to clean up and use again. You'll be seeing a lot of it and because of this, this video deserves to be here. I fixed what I broke, and this was my experience. In this video Ballos Precision Machine demonstrates magnetic dye penetrant testing, crankshaft polishing and inspecting the balance of a "butchered" 4g63 6-bolt crankshaft.

New Year's Eve Hyundai Teardown
It goes like this. One of the best friends I've ever had built this car from junk parts. He said it best, "it was built from literally a box of scraps". It ran an 13.2 in the quarter mile using no aftermarket performance parts of any kind. That quarter mile time was limited by traction. I know this car had more in it, but I never managed to get it to stick before encountering this. More on this build... The proper bolts were not always available, but the builder knows isht from Shinola. Even though this engine defies all engineering logic from Mitsubishi, the builder knew what would work and what would not. Budget was of the most primary of his concerns, and it shows at every turn, and it's what brought us to the kind of failure we find in this video. I asked him what bearings he used. He said, "...the least expensive ones I could find. Picture Aluglides. Now picture generic Aluglides. I paid half-as-much for those bearings as I would for generic Aluglides. Bolt too long? Put a nut on it and shorten it. Oil pan too close to the pickup? Hammer a big dent in it to make clearance for it. Wrong water pipe? Put a brass hardware store tee in the line to tap a turbo coolant feed. Forget buying ARP's, this is an all-standard re-used factory fastenere'd no-oil-squirter .030"-overbore 6-bolt with the cut-off balance shaft mod. It's using a small combustion chamber head off of a 1.6L Mirage with a 2.0L non-turbo block. The plug wires are used. The radiator hoses were used. Everything but the head gasket came from a junk car. The FWD turbo gearbox is from my 150,000 mile old Plymouth Laser that donated the block to the Colt. This is one of the most amusing cars I've ever wrapped my fingers around because of these kinds of character-building attributes. Nevermind that the chassis has less than 70,000 miles on it (not bad for a '92), it's just that it's built without using any new parts. Parts were substituted when they were not available, and it's ridiculously powerful. Thank you Jamie. You discovered your answer. I'm happy to help. I'll be changing some things like the oil pan bolts, bearing quality, some of the plumbing and fixing a few wiring harness problems, but I'm not changing anything else if I can avoid it. This car was never intended to have anything upgraded to deliver raw power, and I'll do my best to keep it that way, replacing and restoring what failed so that we can keep pushing these generic non-turbo .030" over pistons to the limit. Apparently, 24 PSI from a 14b is not enough. In the meantime, my diagnosis is that excessive oil pressure lead to the breakdown of the #1 bearing. After all, it's the 1st bearing in-line in the oil system on the main gallery. It's the most isolated from clutch harmonics, yet it was the one that spun. The #1 bearing supplies the oil pump. The teardrop on the head is nearly gone from head resurfacing, and this is a no-balance-shaft no-oil-squirter block. I think high oil pressure is why it falls on its face above 6000 rpms. There's a restriction upstream from the lifters and they deflate at high RPMs, losing lift. I'll fix it. I've got the parts.

Blueprint 104 - The Crankshaft
It's important to know what you've got even before dealing with the machinist. If you want to inspect a crankshaft, this is how you do it. I detail the process of removing the crank and what to measure. All specifications in this video are illustrated with a 6-bolt 4g63 turbo block, but are all actually the same for 7-bolt engines with the exception of the rod widths.

Cylinder Head 204 - Porting & Polishing
This is a first-generation 1992 1.6L Hyundai Elantra small-combustion-chamber head. Thats what it is. It's a J1 engine's cylinder head. In Cylinder Head 106 I talked about the mainstream porting theories as they are discussed. We looked at a cylinder head that I have thousands of dollars of professional work performed on, and a bone-stock second-generation head that I didn't port. In this video I just might do something you haven't seen done before. For some, that may be uncomfortable. The port and polish job I perform here is what I think will work best for my current build. This is not an extreme killer port job. What will be different here is where port textures are concerned, I will be following the advice of a reputable source that will remain un-named. You're free to port yours differently than I do in this video, and I give you that out, around the 20 minute marker. The Hyundai is far from being an ultimate-performance build. It's a $400 box of scraps with nothing but time invested. It's perfect for this video. My finished product WILL be an improvement over what I had. I don't yet have access to a flow bench. I still have an achievement to un-lock. As far as you should be concerned with the techniques I employ... without flow numbers there is no evidence of what this will do, but we will gather lots of info from dynp sessions and drag strip time slips. If I could test it on a flow bench, I would. There are MANY, and when I say many, I mean thousands of flame war mongering pirates floating around on rough seas with a hair trigger cannon finger itching to fire if you port a head any differently than what the herd mentality says to do while porting a cylinder head. I cover the herd mentality because it has merit. It's been tested. Tried and true. But I don't follow it to the letter of the law. I'm definitely not here to de-bunk it. I would port a cylinder head differently for each build based on how that engine was used. There's an extremely valid reason why relating to air speed. It's not the texture of a port that maximizes the effect of fuel atomization, but the velocity of the air running through an x or y sized valve. The driving factor in this is the piston speed. I'm not going to give you the technical information, but will refer you to information about the Lovell factor. There's a better description of this in the links below, and even a calculator to help you find your engine's sweet spot. Why the Lovell factor is important: https://www.highpowermedia.com/blog/3346/the-effect-of-valve-size Lovell gas factor calculator: http://www.rbracing-rsr.com/lovellgascalc.html Only people who have flow testing equipment know for sure what really works and have the capability to produce a perfectly-matched port job for the ultimate performance build. Those guys know the definition of ultimate, and THEY are floating below the water Aegis-class submarines ready to blow your comment up if you don't know what you're talking about. They don't care if you're an armchair mechanic or a herd of pirates. I will say, they're zoomed in pretty close on me right now, and I'm expecting to take a few hits. My work will be tested based on Dyno and drag strip performance, and the results will be posted here. Fortunately, those kinds of videos are a WHOLE LOT EASIER TO MAKE!!!

4g63 Oil Filter Housings
The link to my website is here BUT THE DATA AND PAGES ARE NOW BEING CREATED. I couldn't leave you without a video any longer. I really will have a link here very soon that goes straight to the information. To prove I'm not bullshittin' you... here's the website. http://www.jafromobile.com It's full of placeholders and copy I did not write. Though I did not write it, the author knows me very well! There will be highly-detailed measurements of all the pieces parts available shortly. I suppose if there was anything else I needed to say here it would be... these are the filter housings I got my hands on and tested. They happened to be from each of the models of the mainstream cars with a 4g63 in the United States with only one exception (EVO III). There may be variations from year to year, but to be as specific as I possibly can, read on... The 91-94 housing I demonstrated is specifically from an early 1992 6-bolt/4-bolt turbo AWD car. The one I call 95-99 is specifically from an October '94 built 1995 model Eclipse GSX. One of the '90 OFH's was brand new, and the other one on the Colt came from a 1990 Plymouth Laser FWD. The Galant housing I have no data on. I was told that's what it was. It may actually be from a non-turbo Eclipse? The 1990 factory service manual has an illustration of this oil cooler-less unit. I've never paid attention to this in the junkyard and I haven't owned a NA 4g63. Do the 1g non turbo DSMs even have oil coolers? You guys know better than me. The non-turbo oil filter housing is the least restrictive because it has the longest spring installed depth. The non-oil-cooler blocks are the no-oil-squirter blocks. Get how these are similar? You put an oil cooler on this thing and your pressure goes up. Look at the charts. Put an external air-oil cooler on a 1g? Your pressure goes up. Put the Evo III housing on a 2g? Pressure goes DOWN. High oil pressure can result not just from how you built your motor. Last thing to say... Yes, you could easily INCREASE your spring installed height by using a THICKER crush washer. That would lower your pre-load, opening pressure AND piston travel across the port prior to spring bind. Could you double-stack crush washers? Probably. Will it leak oil? I'm sure it will eventually. Either bore the cap deeper or machine a 1 piece part is my recommendation. Would I try it with stacked crush washers? Most definitely. Look at what you have to do to remove and port it.

Hyundai 4g63 Assembly Part 2
Continued progress on the Hyundai build. I've covered most of this before in detail, so I'll save you the fancy narrative. The torque settings are in both the info below, and the video shown on the wrench. You will see this process again here, and each time new aspects of assembly tools and materials will be used. SPECIAL THANKS TO ROJODELCHOCOLATE for the audio track. Oil Pan Bolts 18 7 M6 x12 5'lbs MD012109 2 7 M6 x8 5'lbs MD167134 (some cars use 10mm shorties but 8mm will work) 1g Front Case Bolts qty/GR/DIA/length/torque/part# 4 7 M8 x20 17'lbs MF140225 1 7 M8 x25 17'lbs MF140227 1 7 M8 x40 17'lbs MF140233 1 4 M10 x30 22'lbs MF140062 (6-bolt) 1 7 M8 x40 17'lbs MF140233 (7-bolt) 1g oil pump housing bolts 5 4 M8 x20 12'lbs MF140025 (4qty for 7-bolt and add 1 MD141302 screw) 1 10 M8 x16 27'lbs MD040758 (Balance/Stub shaft bolt) Oil Pump Sprocket Nut 1 11 M10 x 40'lbs MD095237 *use Loctite 1g oil filter housing bolts (that I used w/6-bolt water-cooled OFH) 2 7 M8 x40 14'lbs MF241261 1 7 M8 x20 14'lbs MF140225 1 7 M8 x55 14'lbs MF241264 1 7 M8 x65 14'lbs MF241266 1g Rear Main Seal Housing Bolts 5 7 M6 x16 10'lbs MF140205 (6-bolt) 5 7 M6 x14 10'lbs MF140204 (7-bolt) 1g Timing Tesnsioner Bolts 2 7 M8 x51 17'lbs MD129350 (6-bolt) 2 7 M8 x55 17'lbs MD190987 (7-bolt) 1g Timing Tensioner Arm Bolt 1 8 M8 x16 16'lbs MF241251 Bolt 1 x x x x MD129421 Washer Flywheel bolts 6 11 M12 x22.5 98'lbs MD040557* (ALL Manual transmission 6-bolt cars) 7 11 M12 x21.5 98'lbs MD302074 (ALL Manual transmission 7-bolt turbos) * Part substitution # 2795A956 Crank Sprocket Bolt & Washer 1 11 M14 x40 87'LBS MD074255 CRANKSHAFT CENTER BOLT 1 x M14 x14.5 MD012455 CRANKSHAFT WASHER For gasket, seal and service parts information, please refer to my 6-bolt 4g63 shortblock rebuild parts video: https://www.youtube.com/watch?v=ofWnFXkix3w For timing belt service parts information and tools, please refer to my 4g63 Timing Belt Parts video: https://www.youtube.com/watch?v=BN7TOVrkUNQ In 29 and 3/4 minutes I offer a detailed explanation of how to do a 6-bolt AND 7-Bolt 4g63 Front Case & Oil Pump Rebuild: https://www.youtube.com/watch?v=DPhyazI1fYc For 33 minutes I cover every oil filter housing including servicing information, rebuilding, modifying the oil filter housing, and the unabridged description of how oil pressure works in my 4g63 Oil Filter Housings video: https://www.youtube.com/watch?v=X88tw1UFs_M

Driveshaft 103 - Replacing carrier bearings
This is the easy stage of the job. Pulling and replacing carrier bearings is actually fun, too. You get to rip them to pieces with little risk of personal injury. If they've been rattling your teeth out for a while, you're going to enjoy getting even with them. So many people are scared of the Lobro joint, but I assure you, unless you couldn't build anything out of Lego's as a child, you're not going to have any trouble with it. It's an amazingly simple part held in with 6 bolts, a clamp, and a snap ring. If it comes apart, so long as you know where everything goes, it will go back together. Don't worry. This video shows you how to replace carrier bearings whether your Lobro joint is healthy or not.

三菱 ランサーエボリューション4G63エンジン モンスタースポーツ コンプリートエンジン【MX350】作業解説 [MONSTER SPORT MITSUBISHI EVO TUNED Eg]
http://item.rakuten.co.jp/tajimastore/c/0000000162/ http://www.monster-sport.com/product/parts/complete_eng/ http://www.monster-sport.com/e/car/evo10.html 三菱のスポーツエンジン4G63を、多くのモータースポー 用エンジンに携わり、エンジンの研究・実験により得 ノウハウと、高度に標準化した品質管理と工程管理の でコンプリートエンジン化しました。

Cylinder Head 201 - Radius Cut Valve Job
This video covers the complete valve job process that your machinist might perform. If the 100 series videos didn't help you identify and correct a problem with your cylinder head, then this is the next step. This video is brought to you with permission from my machinist in full 1080HD, and covers cleaning up the head inside and out, preparation and setting up a radius cutter, cutting all 16 valve seats, valve grinding, and spans 3.5 hours of actual work in under 30 minutes. There's nothing like this anywhere else on YouTube. THANK YOU BALLOS PRECISION MACHINE. Thank you for the professional explanation and execution of a job excellently-done, and un-precedented access to your facilities. A valve job is done by re-grinding or replacing valves, and then having new seats cut to match the faces of the valves you're using. There are several different machines that might be utilized to achieve this result, but the process is the same no matter how it's done. There are seat cutters that utilize cutting stones. There are valve seat cutters with 3 separate angles installed 120° out-of-phase, and there are single cutters with all 3 angles (radius cutter) that cut with one blade in one pass. The machine demonstrated here is a Sunnen VGS-20 Radius Cutter. This machine (now out of production) produces a gradual curved seat that's superior to the shape of a traditional 3-angle seat. While a radius cutter does contain the 30, 45 and 60 degree angles, it does so without leaving any sharp edges between their faces. My valve selection includes Supertech 1mm oversized nitride-coated stainless steel undercut and back-cut intake valves, and 1mm oversized Inconel back-cut Exhaust valves. Inconel is a high-temperature alloy utilized in marine and forced-induction performance engines that can handle more abuse than steel can without melting. The other characteristics of the valves which are discussed typically yield bigger gains in airflow than simply using a bigger hole and a bigger valve. Why I did this to a perfectly-good cylinder head: I changed cams. Because the valves were previously recessed during another valve job 9 years ago, my valve installed height was increased and this raised the operating positions of my rocker arms. My new camshaft selection dictates using the stock valve install height. The only solutions to this valve install height problem are to either replace the valve seats, or install oversized valves. I opted for the latter.

Turbo Elantra Bearing Failure Diagnosis
I had time to look at this thing up close. Go through the oil system, and check out all the bearings. Looks like another good study for my oil system series because it's the opposite problem that my GSX experienced. High oil pressure can be remedied a number of ways, but left unchecked can actually take a toll on your bearings. The way your engine bearings work, the parts they suspend are supported only by an oil film layer, and flow needs to be right in order for it to work as an actual bearing. If the oil supply is insufficient, then it loses the ability to suspend the part causing it to crash into the bearing surface. If oil flow is too great, friction is increased, the flow becomes turbulent, and the oil film doesn't form properly. High oil pressure can float and spin rod bearings, and that's worst-case scenario. I had several un-favorable conditions going on inside this engine and that makes it a little bit difficult to link what my engine experienced to any one singular thing. I think it's easier to look at it like some sort of perfect storm. From sub-standard parts for how the engine components would be used, to oil pressure, to part fatigue, to part history to abuse... this thing's got a little bit of everything working against it and that's why it's such a hilarious car. It was given to me with one condition. "See what this thing will do, and see how long it goes before it breaks." My take on it is, the parts are still less than ideal, and they've still got life left in them. It's worth fixing. These parts are worthless as a race motor, and normally I'd have junked 'em, but it's the Hyundai.

Hyundai Elantra 4g63 Shortblock Assembly
HOLD ON TIGHT! HERE WE GO! We begin the blueprint and assembly on my 1992 Hyundai Elantra's bastardized 4g63. The parts used in this are from a mash of different brands and models outside of the typical 2.0L 4g63, but the specs and standards I am following for its assembly are for the 2.0L DOHC. If you want to follow along in your service manual to verify what I've done here in this video, the processes we cover here detail pages 11C-95 through 11C-105 of the 1g Overhaul manual. I would prefer you not rip them from the binding and throw them away, relying only on this video for instruction... but rather use this video as a motivational guide, and as a demonstration of the techniques involved in those sections. You gotta do the cooking by the book. I never had any intention of making instructional videos on this particular car, but after it blew up I slowly realized it's actually a better case study for how a 4g63 ticks than anything else in my driveway. There are several reasons for this. One being that it's a mix of parts that shouldn't be bolted together, and the other is that many of you watching my videos aren't trying to build a 600hp engine out of aftermarket parts. You're trying to put back together what used to be your daily driver. This car covers those bases. Don't think for a second I won't go through this same trouble and level of detail for the GSX. I will. When I do, having this information in this video will give you a better understanding on how and why I do things the way I do when I get there. This was the shortest I could condense this video. I've never uploaded a video this long, and I hope I never have to do it again. It took a month to create on cutting-edge equipment, 16 hours to export, and 9 hours for YouTube to process. My script for the voiceover is 6 times longer than the whole script for the movie Pootie Tang. 6 times. Longer. Than a Hollywood movie.

Cylinder Head 103 - Deck Tech
How to clean, inspect, and determine what you can do with your cylinder head. Also how WHAT you do affects your oil system. There are many variables at play when you make changes to your cylinder head deck from your oil system, compression ratio, your valve timing and potentially even disaster. 'best not to go that far with it. Watch this video and avoid it if you're building your own 4g63 head. The differences between this head and a 1g head are mostly related to port sizes on the intake and Exhaust, and different sized head bolt holes. The 7-bolt uses an 11mm bolt, and a 6-bolt uses 12mm. 1g heads have gigantic intake ports, but aside from that, valve geometry, oil system functionality and the service limits are all the same. Also, click these links for in-depth discussions about oil port modifications for all generations of Mitsubishis, and specifically for 2g head installations on a 1g block. 4g63 Oil Port Modification: http://www.dsmtuners.com/forums/newbie-forum/341028-4g63t-head-oil-port-mod .html 2nd gen head on a 6-bolt block: http://www.dsmtuners.com/forums/cylinder-head-short-block/341885-oil-port-m od-2-4g63t-2.html Possibly 2 of the best threads on 'Tuners for anyone considering a 1g-in-a-2g or for anyone that wants to know everything about a DSM oil system.

Which car is faster? Which Car is Faster?

Similar 1/4 mile timeslips to browse:

1973 Buick Apollo : 8.700 @ 155.870
Thomas Fuchs, Engine: 565 Chevrolet, Tires: Goodyear

1995 Triumph Daytona 1200: 9.460 @ 143.000

1995 Triumph Daytona 1200: 9.640 @ 142.000

2006 Triumph Daytona 675: 10.717 @ 127.660
scott owens,

2008 Triumph Daytona 675: 10.750 @ 130.230
Oliver Demick,

1997 Triumph Daytona T595: 11.110 @ 126.330
Art G,

1997 Triumph Daytona T595: 11.140 @ 126.510
JR215, Tires: Pirelli super corsa

2008 Triumph Daytona Street Triple 675: 11.363 @ 118.590
My Friend Mike,

2008 Triumph Daytona Street Triple: 11.536 @ 118.850
My Friend Mike,

2008 Triumph Daytona Street Triple 675: 11.738 @ 118.000
My Friend Mike,

2007 Triumph Daytona Daytona 675: 11.759 @ 119.520
Grant F,

1974 Buick Apollo : 11.766 @ 111.790
bill macke, Engine: 72 chevy 400 smallblock,

1948 Ford Business Coupe: 12.290 @ 104.000
Randy Sjuts, Engine: 327,

2002 Lincoln Town Car Signature Series: 14.796 @ 93.150
Fahad H., Engine: V8 4.6L SOHC, Tires: Nitto Drag Radial

2003 Lincoln Town Car Signature Series: 15.350 @ 88.440
Tim A., Engine: Ford 4.6L SOHC Modular V8, Supercharger: no Turbos: no Tires: P225/60R17 Michelin Energy LX4 white line

1994 Lincoln Town Car Signature: 16.155 @ 86.090
David Huther, Engine: 4.6L V8, Tires: michelin symmetry

1996 Lincoln Town Car Executive Series: 16.391 @ 84.770
Maher Attallah,

2007 Lincoln Town Car Executive Series L: 16.725 @ 84.070
James Pappas, Engine: 4.6,

2004 Lincoln Town Car BPS (Ballistic Protection Series): 18.600 @ 77.000


©2014 DragTimes - Disclaimer