Drag Racing 1/4 Mile times 0-60 Dyno Fast Cars Muscle Cars

4g63 Balance Shaft Elimination - bearing modification

This is the first part of a two part series about balance shaft elimination on 4g series engines. This video details the bearings, the other video will cover the front case modifications. I've already got a low-def video of the front case mods, and I plan to re-shoot that one in HD when I'm in the assembly phase. It's linked in the video. The balance shafts are designed to cancel out harmonic vibrations caused by combustion and the spinning rotating assembly. They may offer a greater degree of comfort to the driver and passengers, but with that comfort comes a price. Often, when a 4g63 timing belt gives up, it's because the balance shaft belt breaks or comes loose and takes the timing belt out with it. When that happens, it can total your pistons, valves, damage the crankshaft, wrist pins, timing belt tensioner and crank angle sensor. Basically, it can total your motor. The balance shafts also have a combined weigh over 10 lbs and both are driven off the timing belt making them additional and heavy rotating mass. If you've got a lightweight flywheel but still have balance shafts, you have your priorities mixed up. So here's what you do with the bearings. It's easy. You can do this at home. You CAN do it with the motor in the car, BUT DON'T. You must enjoy punishment to do this like that. The end result will slightly increase your oil pressure, but usually not enough to cause concern unless you have a full-circumference bearing turbo, ball bearing turbo--with your oil feed coming off the oil filter housing. The head feed would be better in that case because it's regulated at 15 PSI.


 


More Videos...


Cylinder Head 204 - Porting & Polishing
This is a first-generation 1992 1.6L Hyundai Elantra small-combustion-chamber head. Thats what it is. It's a J1 engine's cylinder head. In Cylinder Head 106 I talked about the mainstream porting theories as they are discussed. We looked at a cylinder head that I have thousands of dollars of professional work performed on, and a bone-stock second-generation head that I didn't port. In this video I just might do something you haven't seen done before. For some, that may be uncomfortable. The port and polish job I perform here is what I think will work best for my current build. This is not an extreme killer port job. What will be different here is where port textures are concerned, I will be following the advice of a reputable source that will remain un-named. You're free to port yours differently than I do in this video, and I give you that out, around the 20 minute marker. The Hyundai is far from being an ultimate-performance build. It's a $400 box of scraps with nothing but time invested. It's perfect for this video. My finished product WILL be an improvement over what I had. I don't yet have access to a flow bench. I still have an achievement to un-lock. As far as you should be concerned with the techniques I employ... without flow numbers there is no evidence of what this will do, but we will gather lots of info from dynp sessions and drag strip time slips. If I could test it on a flow bench, I would. There are MANY, and when I say many, I mean thousands of flame war mongering pirates floating around on rough seas with a hair trigger cannon finger itching to fire if you port a head any differently than what the herd mentality says to do while porting a cylinder head. I cover the herd mentality because it has merit. It's been tested. Tried and true. But I don't follow it to the letter of the law. I'm definitely not here to de-bunk it. I would port a cylinder head differently for each build based on how that engine was used. There's an extremely valid reason why relating to air speed. It's not the texture of a port that maximizes the effect of fuel atomization, but the velocity of the air running through an x or y sized valve. The driving factor in this is the piston speed. I'm not going to give you the technical information, but will refer you to information about the Lovell factor. There's a better description of this in the links below, and even a calculator to help you find your engine's sweet spot. Why the Lovell factor is important: https://www.highpowermedia.com/blog/3346/the-effect-of-valve-size Lovell gas factor calculator: http://www.rbracing-rsr.com/lovellgascalc.html Only people who have flow testing equipment know for sure what really works and have the capability to produce a perfectly-matched port job for the ultimate performance build. Those guys know the definition of ultimate, and THEY are floating below the water Aegis-class submarines ready to blow your comment up if you don't know what you're talking about. They don't care if you're an armchair mechanic or a herd of pirates. I will say, they're zoomed in pretty close on me right now, and I'm expecting to take a few hits. My work will be tested based on Dyno and drag strip performance, and the results will be posted here. Fortunately, those kinds of videos are a WHOLE LOT EASIER TO MAKE!!!





6&7-Bolt 4g63 Front Case & Oil Pump Rebuild
Here we disassemble, clean, inspect and rebuild both popular 4g63 front cases. This is not difficult, you just need to know what to look for. Something else that happens in this video is the analysis of one of the factors that caused my 7-bolt engine to fail. It wasn't the only cause, and we'll talk about that later, but left to its own devices and without the other contributing factors, it would have been the only cause.





Crankshaft Refurbishing
Many of you have seen this one before. I apologize if bringing it back offends anyone. Domestickilla gave me a crankshaft, and it's a nice one that I want to clean up and use again. You'll be seeing a lot of it and because of this, this video deserves to be here. I fixed what I broke, and this was my experience. In this video Ballos Precision Machine demonstrates magnetic dye penetrant testing, crankshaft polishing and inspecting the balance of a "butchered" 4g63 6-bolt crankshaft.





New Year's Eve Hyundai Teardown
It goes like this. One of the best friends I've ever had built this car from junk parts. He said it best, "it was built from literally a box of scraps". It ran an 13.2 in the quarter mile using no aftermarket performance parts of any kind. That quarter mile time was limited by traction. I know this car had more in it, but I never managed to get it to stick before encountering this. More on this build... The proper bolts were not always available, but the builder knows isht from Shinola. Even though this engine defies all engineering logic from Mitsubishi, the builder knew what would work and what would not. Budget was of the most primary of his concerns, and it shows at every turn, and it's what brought us to the kind of failure we find in this video. I asked him what bearings he used. He said, "...the least expensive ones I could find. Picture Aluglides. Now picture generic Aluglides. I paid half-as-much for those bearings as I would for generic Aluglides. Bolt too long? Put a nut on it and shorten it. Oil pan too close to the pickup? Hammer a big dent in it to make clearance for it. Wrong water pipe? Put a brass hardware store tee in the line to tap a turbo coolant feed. Forget buying ARP's, this is an all-standard re-used factory fastenere'd no-oil-squirter .030"-overbore 6-bolt with the cut-off balance shaft mod. It's using a small combustion chamber head off of a 1.6L Mirage with a 2.0L non-turbo block. The plug wires are used. The radiator hoses were used. Everything but the head gasket came from a junk car. The FWD turbo gearbox is from my 150,000 mile old Plymouth Laser that donated the block to the Colt. This is one of the most amusing cars I've ever wrapped my fingers around because of these kinds of character-building attributes. Nevermind that the chassis has less than 70,000 miles on it (not bad for a '92), it's just that it's built without using any new parts. Parts were substituted when they were not available, and it's ridiculously powerful. Thank you Jamie. You discovered your answer. I'm happy to help. I'll be changing some things like the oil pan bolts, bearing quality, some of the plumbing and fixing a few wiring harness problems, but I'm not changing anything else if I can avoid it. This car was never intended to have anything upgraded to deliver raw power, and I'll do my best to keep it that way, replacing and restoring what failed so that we can keep pushing these generic non-turbo .030" over pistons to the limit. Apparently, 24 PSI from a 14b is not enough. In the meantime, my diagnosis is that excessive oil pressure lead to the breakdown of the #1 bearing. After all, it's the 1st bearing in-line in the oil system on the main gallery. It's the most isolated from clutch harmonics, yet it was the one that spun. The #1 bearing supplies the oil pump. The teardrop on the head is nearly gone from head resurfacing, and this is a no-balance-shaft no-oil-squirter block. I think high oil pressure is why it falls on its face above 6000 rpms. There's a restriction upstream from the lifters and they deflate at high RPMs, losing lift. I'll fix it. I've got the parts.





Turbo Elantra Bearing Failure Diagnosis
I had time to look at this thing up close. Go through the oil system, and check out all the bearings. Looks like another good study for my oil system series because it's the opposite problem that my GSX experienced. High oil pressure can be remedied a number of ways, but left unchecked can actually take a toll on your bearings. The way your engine bearings work, the parts they suspend are supported only by an oil film layer, and flow needs to be right in order for it to work as an actual bearing. If the oil supply is insufficient, then it loses the ability to suspend the part causing it to crash into the bearing surface. If oil flow is too great, friction is increased, the flow becomes turbulent, and the oil film doesn't form properly. High oil pressure can float and spin rod bearings, and that's worst-case scenario. I had several un-favorable conditions going on inside this engine and that makes it a little bit difficult to link what my engine experienced to any one singular thing. I think it's easier to look at it like some sort of perfect storm. From sub-standard parts for how the engine components would be used, to oil pressure, to part fatigue, to part history to abuse... this thing's got a little bit of everything working against it and that's why it's such a hilarious car. It was given to me with one condition. "See what this thing will do, and see how long it goes before it breaks." My take on it is, the parts are still less than ideal, and they've still got life left in them. It's worth fixing. These parts are worthless as a race motor, and normally I'd have junked 'em, but it's the Hyundai.





Cylinder Head 103 - Deck Tech
How to clean, inspect, and determine what you can do with your cylinder head. Also how WHAT you do affects your oil system. There are many variables at play when you make changes to your cylinder head deck from your oil system, compression ratio, your valve timing and potentially even disaster. 'best not to go that far with it. Watch this video and avoid it if you're building your own 4g63 head. The differences between this head and a 1g head are mostly related to port sizes on the intake and Exhaust, and different sized head bolt holes. The 7-bolt uses an 11mm bolt, and a 6-bolt uses 12mm. 1g heads have gigantic intake ports, but aside from that, valve geometry, oil system functionality and the service limits are all the same. Also, click these links for in-depth discussions about oil port modifications for all generations of Mitsubishis, and specifically for 2g head installations on a 1g block. 4g63 Oil Port Modification: http://www.dsmtuners.com/forums/newbie-forum/341028-4g63t-head-oil-port-mod .html 2nd gen head on a 6-bolt block: http://www.dsmtuners.com/forums/cylinder-head-short-block/341885-oil-port-m od-2-4g63t-2.html Possibly 2 of the best threads on 'Tuners for anyone considering a 1g-in-a-2g or for anyone that wants to know everything about a DSM oil system.





Blueprint 105 - Main Bearing Oil Clearances
In this episode we measure the bores for the crankshaft and calculate the oil clearances based off of information gathered in the previous video. If you subtract the diameter of the crankshaft from the bore diameter, you end up with your oil clearances. If this were an assembly with new parts, I would have also paid close attention to bearing measurements 45° off-centerline just to make sure the bearings aren't pinched. I would also have double-checked the clearances using Plastigage. But what I'm doing here is just getting baselines prior to machining. If you're doing a dry assembly like this, DO NOT ROTATE THE CRANKSHAFT. Without oil, there is nothing preventing it from being damaged.





三菱 ランサーエボリューション4G63エンジン モンスタースポーツ コンプリートエンジン【MX350】作業解説 [MONSTER SPORT MITSUBISHI EVO TUNED Eg]
http://item.rakuten.co.jp/tajimastore/c/0000000162/ http://www.monster-sport.com/product/parts/complete_eng/ http://www.monster-sport.com/e/car/evo10.html 三菱のスポーツエンジン4G63を、多くのモータースポー 用エンジンに携わり、エンジンの研究・実験により得 ノウハウと、高度に標準化した品質管理と工程管理の でコンプリートエンジン化しました。





How to port and polish a turbo exhaust housing
I'll fill this in later. The "book" I typed in this field before didn't save. Come back later if you want to read more about the theories behind porting and polishing.





Mitsubishi 4G63 Honing with Torque Plate
See what a difference a torque plate makes on a Mitsubishi 4G63 block out of an Evo IX makes as John Edwards @ Costa Mesa R&D Automotiove Machine walks you through the steps. (949) 631-6376 Don't forget to 'Click' and SUBSCRIBE.





Cylinder Head 106 - Casting & Porting Tech
Description. No really guys, what can I type here? I just went on for 18 minutes without shutting up. I apologize for deviating from my normal format, but we're almost there... ...when I port a head, there will be no voiceover, and it will be a 200-series video.





Porsche 911 w/ 4g63 swap 650HP test launch
Check out this unique 650HP Porsche with the heart of a Mitsubishi 4g63 turbocharged engine!!!!!! Wait till the end to see the sick test launch





Cylinder Head 107 - 4G63 HLA Lifter Tech
I have all 3 revisions of the DSM lifters in this video. This will help you identify which ones are in your cylinder head, as well as illustrate the cleaning process, and each lifters' advantages and disadvantages. WHEN you finally have to perform maintenance on these lifters, they're a bigger pain than a solid lift valvetrain is (ONCE). BUT if you follow the service schedule on a solid lift valvetrain, HLA's are a smaller pain overall. You'll never need feeler gauges to adjust these hydraulic lifters, and you'll never need to know their gap. You can't adjust them. You'll just know whether or not they're good by the amount of noise they make. 3 things can cause trouble with them. Clogged lifters, insufficient oil pressure, or insufficient oil volume. So before you sail your oil pump down the river, you can follow the steps in this video to rule out the first variable. You can actually remove and re-install them without taking the timing belt or camshafts out, but that will be another video. Chances are you already know this. The second and third potential issues COULD be your oil pump, but for your oil light isn't on and if there's ever been machine work in its past history to either the head or the block, I explain in "Cylinder Head 103 - Deck Tech" what a frequently-overlooked part of the cylinder head is that could be a contributor to the issue. That link is in the video. I MENTIONED ANOTHER COOL VIDEO: it was here... http://www.youtube.com/watch?v=lorANZ1Tptw Thank that author as well. He did a great job! I don't know the guy and claim no credit to his work, I'm just giving him a shout-out.





1999 Mitsubishi Eclipse GSX - GSseX Season 3
This is the Season 3 video for GSseX. This is primarily an engine build video as that is what took place the majority of its "third" season. The vehicle is now a 2.4l G4CS powered torque machine! Staying in line with my goals for this car to be a competitive road race car, I have completed an engine appropriate for the road course. This was my first engine build, and it was complicated by doing a 6 bolt swap just to complicate things. However, with a factory service manual, DSMtuners, and some dedication, the engine turned over without any complications. The engine has been broken in on a 16g turbo for about 500 miles and is running just fine! There is a new fp3052 turbo ready to go onto the car, and with any luck, I'll finish preparing the car for inspection and FINALLY have a "season" video with some race course action! I have yet to launch or really get on the new engine, so I dont even know what it is capable of yet, but from the acceleration it gave me at even partial throttle, it is scary. I can't wait to turn up the Boost on its new turbo :) Thanks for watching, see you at Season 4!





6-bolt 4g63 shortblock rebuild parts
I'm saying it right up front. This video goes above and beyond shortblock rebuild parts for a reason. Read on... The first part is stern, the last part is happy. Nobody in their right, left, forward or reverse minds puts a 23-year-old 4g63 engine back together with 100% OEM parts. Nobody's shooting for that good ol' stock 190hp feeling with a DSM drivetrain. Nobody. Not unless they've got something to prove. I am putting a 7-bolt head on a 6-bolt block. So with that said, I show several over-the-top internal parts that are and are not related to the short block itself. I show cams and valve springs which only matter for head work. Not part of the short block. Nobody makes an engine gasket kit with all the parts mixed and matched to do this. So what people have to do is order both kits, or order all the individual parts separately like I am doing here. It's at this stage you are working with a machine shop to return your old worn-out block to the specs you've chosen to follow, and you need these cylinder head parts at this stage of the game to do it right. These parts making an appearance in this video show 3 things... 1) I am not aiming for a stock build 2) Now is the time to have your cam and valve springs if you're going to make any changes to the head. 3) these gaskets, seals, pins, bolts and bearings are things you will need no matter what it is you're building if it's a 6-bolt block. When I do the head series, I will be showing modifications and parts to rebuild and make a 7-bolt head fit a 6-bolt block. This video assumes you disassembled a running or freshly-broken engine and that YOU HAVE ALL THE BOLTS, NUTS, WASHERS, and HARD PARTS of the motor that it needs, bagged and tagged like was demonstrated in the "Crankwalked?" video. You've watched me clean and inspect valves, lifters, rockers, crankshafts, rods, etc. I don't need my turbo, hoses, vacuum lines or anything like that yet, and they likely won't be for a MHI turbo anyway. This video focuses on the gaskets, seals, bearings, consumable and disposable parts that you should replace for the shortblock only. My old trusty 6-bolt front case is coming up in a future video, getting refurbished and rebuilt, and ssembling a shortblock doesn't require having timing components yet. The head gasket will probably get its very own video just like the front case. As you can see, I have very big plans with this upcoming series. We've hit the 200's on engine stuff. It's a milestone. For you 7-bolt guys... bah! I know this is all 6-bolt part numbers. Some parts are interchangeable but I didn't make it clear which ones are in this video. Don't worry, you will need these part numbers eventually (I hope that was a joke). But if you wait long enough, perhaps I'll be re-assembling a 7-bolt again? Here comes the first bit of good news... The reason the "Crankwalked?" video had a question mark in the title is because I wanted to see others' comments about it. Gain a consensus. There are so many different opinions about shortblock failures on the 2g cars that I didn't want to take sides with such an entertaining video. But it's not crankwalked. What you see is rod bearing failure as a result of torsional stress on the crankshaft. It was caused by a catastrophic clutch failure. The thrust bearing was .014", and crankwalk cars that fail from crankwalk are usually around .075"-.150". My thrust bearing was beat to death as my old 6-puck fragged. All the fail was initiated by the drivetrain, and the drivetrain problem was a fail by yours truly that had repeated several times prior to me making videos about it and getting it right. It's my fault for not catching it, but when I discovered it, the drivetrain series was born. So my 7-bolt crank is trashed, but the mains are fine. New bearings and a crank would fix its thrust measurements and I may just rebuild it for the sake of a video someday. Now comes the really good news. My brother is working with me to build a website. There will be tech links and things that simply can't be delivered on YouTube. Not in a practical and effective way anyway. Things like schedules, projects and mod lists, parts lists, bolt lists, torque specifications, printable worksheets for blueprinting, the parts I used to make my fuel injector cleaner... stuff my viewers need or ask for. Soon you'll know where to find it. I need to learn how to maintain it, but I'm a good student. Still, these things take time, and I haven't yet wrapped my own brain around its potential. I'm putting it out there for you guys because you deserve it. I'm simply astonished at how the channel has grown, and I feel the need to give back.





Which car is faster? Which Car is Faster?




Similar 1/4 mile timeslips to browse:

1985 Mercury Capri : 8.662 @ 161.690
Joe Pollich, Engine: SVO,


1983 Mercury Capri RS: 9.997 @ 133.500
Ric Bogue, Engine: 351w (393) stroker, Supercharger: n/a Turbos: n/a Tires: 28x10.5


1979 Mercury Capri : 10.310 @ 132.000
Mark, Engine: 351 Ford, Tires: 28-10


1984 Mercury Capri : 10.474 @ 129.870
Paul Garant, Engine: 466 Ford, Tires: 14x32 MT


1985 Mercury Capri rs: 10.561 @ 129.310
todd reynolds, Engine: 1988(5.0L)stock bot. end exc. pistons, Tires: hoosier(all4corners)


1985 Mercury Capri : 10.900 @ 138.000
Scott Ross, Engine: 306, Supercharger: 174 B&M Tires: radial and extra set slicks


1985 Mercury Capri : 11.200 @ 120.000
Thomas Dowhaniuk, Engine: 302,


1969 Ford Capri : 11.400 @ 0.000
Jacob Giannias, Engine: 302 windsor, Supercharger: none Turbos: none Tires: 235 rear 205 front (street tyres)


2008 Ducati Hypermotard : 11.574 @ 112.660
David Vaughan,


2009 Ducati Hypermotard 1100: 11.680 @ 112.950
Mark Gordon,


2010 Ducati Hypermotard Evo SP: 11.784 @ 113.400
Kevin Payne,


1986 Mercury Capri : 12.457 @ 103.820
Anatol Denysenko, Engine: stock 1986 302 Mercury, Tires: Goodyear 29x9


1977 Plymouth Volare : 12.703 @ 106.890
Nate Johnson, Engine: 367,


1985 Mercury Capri rs: 12.900 @ 109.000
dwayne gill, Engine: 5.0L 4BBL, Tires: REARS 295-50'S-15


1979 Mercury Capri rs: 13.115 @ 108.300
steven pham, Engine: 302ci, Tires: 245/50/16 cooper zpt 16psi


1985 Mercury Capri RS: 13.604 @ 100.916
capri331 aka Don B, Engine: 5.0 / 302, Tires: BFG DR 235-60-15 (rear) 13psi


1985 Mercury Capri RS: 13.665 @ 17.382
capri331, Engine: 5.0 / 302, Tires: BFG DR 235-60-15


1984 Mercury Capri RS: 14.100 @ 98.270
Adam Moore, Engine: 2.3 L, Supercharger: none Turbos: stock Tires: 195-50/16


1985 Mercury Capri 5.0: 14.200 @ 94.000
matt alston, Engine: 302, Tires: 235/60/15 rear 205/5


1983 Mercury Capri : 14.520 @ 91.700
brenden, Engine: 302 H.O., Supercharger: none Turbos: none Tires: bfg t/a


 


©2014 DragTimes - Disclaimer