Drag Racing 1/4 Mile times 0-60 Dyno Fast Cars Muscle Cars

6-bolt 4g63 shortblock rebuild parts

I'm saying it right up front. This video goes above and beyond shortblock rebuild parts for a reason. Read on... The first part is stern, the last part is happy. Nobody in their right, left, forward or reverse minds puts a 23-year-old 4g63 engine back together with 100% OEM parts. Nobody's shooting for that good ol' stock 190hp feeling with a DSM drivetrain. Nobody. Not unless they've got something to prove. I am putting a 7-bolt head on a 6-bolt block. So with that said, I show several over-the-top internal parts that are and are not related to the short block itself. I show cams and valve springs which only matter for head work. Not part of the short block. Nobody makes an engine gasket kit with all the parts mixed and matched to do this. So what people have to do is order both kits, or order all the individual parts separately like I am doing here. It's at this stage you are working with a machine shop to return your old worn-out block to the specs you've chosen to follow, and you need these cylinder head parts at this stage of the game to do it right. These parts making an appearance in this video show 3 things... 1) I am not aiming for a stock build 2) Now is the time to have your cam and valve springs if you're going to make any changes to the head. 3) these gaskets, seals, pins, bolts and bearings are things you will need no matter what it is you're building if it's a 6-bolt block. When I do the head series, I will be showing modifications and parts to rebuild and make a 7-bolt head fit a 6-bolt block. This video assumes you disassembled a running or freshly-broken engine and that YOU HAVE ALL THE BOLTS, NUTS, WASHERS, and HARD PARTS of the motor that it needs, bagged and tagged like was demonstrated in the "Crankwalked?" video. You've watched me clean and inspect valves, lifters, rockers, crankshafts, rods, etc. I don't need my turbo, hoses, vacuum lines or anything like that yet, and they likely won't be for a MHI turbo anyway. This video focuses on the gaskets, seals, bearings, consumable and disposable parts that you should replace for the shortblock only. My old trusty 6-bolt front case is coming up in a future video, getting refurbished and rebuilt, and ssembling a shortblock doesn't require having timing components yet. The head gasket will probably get its very own video just like the front case. As you can see, I have very big plans with this upcoming series. We've hit the 200's on engine stuff. It's a milestone. For you 7-bolt guys... bah! I know this is all 6-bolt part numbers. Some parts are interchangeable but I didn't make it clear which ones are in this video. Don't worry, you will need these part numbers eventually (I hope that was a joke). But if you wait long enough, perhaps I'll be re-assembling a 7-bolt again? Here comes the first bit of good news... The reason the "Crankwalked?" video had a question mark in the title is because I wanted to see others' comments about it. Gain a consensus. There are so many different opinions about shortblock failures on the 2g cars that I didn't want to take sides with such an entertaining video. But it's not crankwalked. What you see is rod bearing failure as a result of torsional stress on the crankshaft. It was caused by a catastrophic clutch failure. The thrust bearing was .014", and crankwalk cars that fail from crankwalk are usually around .075"-.150". My thrust bearing was beat to death as my old 6-puck fragged. All the fail was initiated by the drivetrain, and the drivetrain problem was a fail by yours truly that had repeated several times prior to me making videos about it and getting it right. It's my fault for not catching it, but when I discovered it, the drivetrain series was born. So my 7-bolt crank is trashed, but the mains are fine. New bearings and a crank would fix its thrust measurements and I may just rebuild it for the sake of a video someday. Now comes the really good news. My brother is working with me to build a website. There will be tech links and things that simply can't be delivered on YouTube. Not in a practical and effective way anyway. Things like schedules, projects and mod lists, parts lists, bolt lists, torque specifications, printable worksheets for blueprinting, the parts I used to make my fuel injector cleaner... stuff my viewers need or ask for. Soon you'll know where to find it. I need to learn how to maintain it, but I'm a good student. Still, these things take time, and I haven't yet wrapped my own brain around its potential. I'm putting it out there for you guys because you deserve it. I'm simply astonished at how the channel has grown, and I feel the need to give back.


 


More Videos...


Jafro's GSX Build Parts - 1gina2g
Some advice and expectations about the parts acquisition process. Cars only get built in a week on TV. And still then you have to take their word for it. The ones that actually do it have a 20 man full-time crew, and therefore; they have no excuse for not having it done yet. We don't have that. Stuff takes time. I'm not building a car to sell it. There's a whole lot of parts in this video. Whole lot of parts. Rather than spend a ton of space babbling incessantly, this is what you came here for. Part numbers. Meat. This isn't an all-inclusive list of parts for a rebuild. It's what YouTube let me fit. I hope you find what you needed. If not, hang tight. Help is on the way. Shoutout to Sirnixalot in the Cayman Islands for this thread about valvetrain part weights: http://www.dsmtuners.com/forums/cylinder-head-short-block/393646-evo3-evo8- valvetrain-weight-comparison-inside.html 6-bolt fasteners: MF140202 - Bolt, Engine RR Plate Flange M6 x 10 (2qty) MD012109 - Bolt, Engine RR Plate Washer Assembled 6 x 16 (2qty) MF140202 - Bolt, Timing Belt Cover Flange M6 x 10 (4qty) MD167134 - Bolt, Engine Oil Pan (2qty) Flange M6 x 8 MD097012 - Bolt, Engine Oil Pan (17qty) Flange M6x10 MD131417 - Bolt, Timing Belt Cover Flange M6x16 MD040557 - Bolt, Flywheel (6qty) M12x22.5 MS401451 - Stud, M10 x 28 Cylinder Block MD065945 - Plug, Cylinder Block Screw (balance shaft) MS240211 - Bolt, Crankshaft Pulley Washer Assembled M8x25 (4qty) MD129350 - Bolt, Timing Belt Tensioner (2qty) M8x51 MD129354 - Bolt, Timing Belt Train M10x33 Happy Face Bolt MF140062 - Bolt, Engine Front Case M10x30 MF140225 - Bolt, Engine Front Case M8x20 (4qty) MF140227 - Bolt, Engine Front Case M8x25 MF140233 - Bolt, Engine Front Case M8x40 MF241266 - Bolt, Oil Filter Washer Assembled M8x65 MF241261 - Bolt, Oil Filter Washer Assembled M8x40 (2qty) MF241268 - Bolt, Oil Filter Washer Assembled M8x75 MF241264 - Bolt, Washer Assembled M8x55 MF140021 - Bolt, Cooling Water Line Flange M8x12 MF241256 - Bolt, M/T Clutch Slave Cylinder Washer Assembled M8x28 MD718549 - Bolt, Transfer Case Washer Assembled M12x130 (3qty) MF241319 - Bolt, Transfer Case Washer Assembled M12x70 (4qty) MD706012 - Bolt, T/M Connecting Flange M8x60 MD108474 - Bolt, Starter Flange M10x65 (2qty) MF140266 - Bolt, T/M Connecting Flange M10x40 (2qty) MD740892 - Bolt, T/M Connecting Flange M10x43.5 MF140471 - Bolt, T/M Connecting Flange M10x65 MD706012 - Bolt, T/M Connecting Flange M8x60 MF140021 - Bolt, T/M Connecting Flange M8x12 6-bolt Rear Main Seal Housing: MF140205 - Bolt, Cylinder Block Flange M6 x 16 (5qty) Rear Oil Seal Case MD040330 - Case, Crankshaft Rear Oil Seal MD040332 - Oil Separator Crakshaft rear oil seal MF472403 - Pin Cylinder Block Dowel 6x14mm (2qty) MD183243 - Gasket, Rear Oil Seal Case 7-bolt Rear Main Seal Case MD172170* * oil separator ring only required on 6-bolt cars, same oil seal, different gasket. Throttle Body Gasket: 8903.1-9006.1 MD125822 1g 9006.2-9207.3 MD146399 1g (AC60-653) 9208.1-9405.1 MD194578 1g 9401.1-9907.2 MD180360 all 2g cars (MD1) Intake Elbow Gasket: 8903.1-9207.3 MD340327 1g 9208.1-9405.1 MD194827 1g 9401.1-9907.2 MD302262 all 2g cars MD307343 - OE Valve Stem Seals (16qty) MD087060 - OE Fuel Injector Insulator (4qty) MD614813 - OE Fuel Injector O-Ring (4qty) MD181032 - Gasket, Exhaust Manifold 1g/2g (standard) MD188995 - Gasket, 1g Intake Manifold MD192031 - Gasket, 2g Intake Manifold MD183808 - Gasket, Standard Composite Head Gasket 89-99 MD069879 - 1g Sensor Coolant Gauge Unit MD177572 - 2g Sensor Coolant Gauge Unit MD310606 - 1g/2g alternator belt 985mm MD186124 - 1g/2g alternator belt 980mm MD186784 - 1g/2g Valve Cover Gasket MD186785 - 1g/2g Spark Plug Well Gaskets (4qty) MN119896 - 1g tensioner arm MD170402 - 2g tensioner arm MD997608 - 1g thermostat kit MD315301 - 2g Thermostat Kit MD141510 - 1g Knock Sensor MD300670 - 2g Knock Sensor MD133273 - 1g/2g Oil Pressure Gauge Sensor MD091056 - 1g/2g Coolant Temperature Switch MD095656 - 6 bolt clutch cover plate MD191171 - 7 bolt clutch cover plate MD178430 - 1g Power Steering Belt MD310617 - 2g Power Steering Belt MD311638 - Oil filter cap gasket MD343564 - Oil Seal, Crankshaft Rear MD030764 - O-ring, Cooling Water Pipe 33.4mm MD375091 - EVO 8 Rocker Arm





4g63 Block Oil Gallery Mod
This modification is intended to improve your 4g series engine's oil delivery. People frequently discover large chunks of flash in their engine's main oil gallery. It's because the galleries are part of the cast, they're not machined into the block. There is also a very rough sharp edge where the main oil gallery is bored into the block, and oil must make a slightly greater-than 90° turn in order to begin its course to the parts it lubricates. Both of these conditions cause turbulence in the oil flow. My goal in this video is to eliminate as much of that as I can. This is a cheap and easy modification if you have the tools, and the patience. Any engine with cast-in oil galleries could probably benefit from this. Be careful not to cut into the high pressure oil gallery or else you will circulate un-filtered oil to the #1 main, oil pump, and rear balance shaft. You will also deprive the rest of the engine the oil pressure it needs to operate. So in short, punch a hole in that and it's trash. I did this my way, everyone may choose to do this a different way. I just wanted to make this video to raise awareness. Also, there's a great thread on DSMtuners about this. Pictures and everything. Written by a machinist and friend of the DSM community. Go give him some reps because he's posted a lot of great info about the DSM oil system over the years. http://www.dsmtuners.com/forums/articles-engine-fuel/452546-4g63-block-oili ng-mod.html





6&7-Bolt 4g63 Front Case & Oil Pump Rebuild
Here we disassemble, clean, inspect and rebuild both popular 4g63 front cases. This is not difficult, you just need to know what to look for. Something else that happens in this video is the analysis of one of the factors that caused my 7-bolt engine to fail. It wasn't the only cause, and we'll talk about that later, but left to its own devices and without the other contributing factors, it would have been the only cause.





Cylinder Head 201 - Radius Cut Valve Job
This video covers the complete valve job process that your machinist might perform. If the 100 series videos didn't help you identify and correct a problem with your cylinder head, then this is the next step. This video is brought to you with permission from my machinist in full 1080HD, and covers cleaning up the head inside and out, preparation and setting up a radius cutter, cutting all 16 valve seats, valve grinding, and spans 3.5 hours of actual work in under 30 minutes. There's nothing like this anywhere else on YouTube. THANK YOU BALLOS PRECISION MACHINE. Thank you for the professional explanation and execution of a job excellently-done, and un-precedented access to your facilities. A valve job is done by re-grinding or replacing valves, and then having new seats cut to match the faces of the valves you're using. There are several different machines that might be utilized to achieve this result, but the process is the same no matter how it's done. There are seat cutters that utilize cutting stones. There are valve seat cutters with 3 separate angles installed 120° out-of-phase, and there are single cutters with all 3 angles (radius cutter) that cut with one blade in one pass. The machine demonstrated here is a Sunnen VGS-20 Radius Cutter. This machine (now out of production) produces a gradual curved seat that's superior to the shape of a traditional 3-angle seat. While a radius cutter does contain the 30, 45 and 60 degree angles, it does so without leaving any sharp edges between their faces. My valve selection includes Supertech 1mm oversized nitride-coated stainless steel undercut and back-cut intake valves, and 1mm oversized Inconel back-cut Exhaust valves. Inconel is a high-temperature alloy utilized in marine and forced-induction performance engines that can handle more abuse than steel can without melting. The other characteristics of the valves which are discussed typically yield bigger gains in airflow than simply using a bigger hole and a bigger valve. Why I did this to a perfectly-good cylinder head: I changed cams. Because the valves were previously recessed during another valve job 9 years ago, my valve installed height was increased and this raised the operating positions of my rocker arms. My new camshaft selection dictates using the stock valve install height. The only solutions to this valve install height problem are to either replace the valve seats, or install oversized valves. I opted for the latter.





Hyundai 4g63 Assembly Part 2
Continued progress on the Hyundai build. I've covered most of this before in detail, so I'll save you the fancy narrative. The torque settings are in both the info below, and the video shown on the wrench. You will see this process again here, and each time new aspects of assembly tools and materials will be used. SPECIAL THANKS TO ROJODELCHOCOLATE for the audio track. Oil Pan Bolts 18 7 M6 x12 5'lbs MD012109 2 7 M6 x8 5'lbs MD167134 (some cars use 10mm shorties but 8mm will work) 1g Front Case Bolts qty/GR/DIA/length/torque/part# 4 7 M8 x20 17'lbs MF140225 1 7 M8 x25 17'lbs MF140227 1 7 M8 x40 17'lbs MF140233 1 4 M10 x30 22'lbs MF140062 (6-bolt) 1 7 M8 x40 17'lbs MF140233 (7-bolt) 1g oil pump housing bolts 5 4 M8 x20 12'lbs MF140025 (4qty for 7-bolt and add 1 MD141302 screw) 1 10 M8 x16 27'lbs MD040758 (Balance/Stub shaft bolt) Oil Pump Sprocket Nut 1 11 M10 x 40'lbs MD095237 *use Loctite 1g oil filter housing bolts (that I used w/6-bolt water-cooled OFH) 2 7 M8 x40 14'lbs MF241261 1 7 M8 x20 14'lbs MF140225 1 7 M8 x55 14'lbs MF241264 1 7 M8 x65 14'lbs MF241266 1g Rear Main Seal Housing Bolts 5 7 M6 x16 10'lbs MF140205 (6-bolt) 5 7 M6 x14 10'lbs MF140204 (7-bolt) 1g Timing Tesnsioner Bolts 2 7 M8 x51 17'lbs MD129350 (6-bolt) 2 7 M8 x55 17'lbs MD190987 (7-bolt) 1g Timing Tensioner Arm Bolt 1 8 M8 x16 16'lbs MF241251 Bolt 1 x x x x MD129421 Washer Flywheel bolts 6 11 M12 x22.5 98'lbs MD040557* (ALL Manual transmission 6-bolt cars) 7 11 M12 x21.5 98'lbs MD302074 (ALL Manual transmission 7-bolt turbos) * Part substitution # 2795A956 Crank Sprocket Bolt & Washer 1 11 M14 x40 87'LBS MD074255 CRANKSHAFT CENTER BOLT 1 x M14 x14.5 MD012455 CRANKSHAFT WASHER For gasket, seal and service parts information, please refer to my 6-bolt 4g63 shortblock rebuild parts video: https://www.youtube.com/watch?v=ofWnFXkix3w For timing belt service parts information and tools, please refer to my 4g63 Timing Belt Parts video: https://www.youtube.com/watch?v=BN7TOVrkUNQ In 29 and 3/4 minutes I offer a detailed explanation of how to do a 6-bolt AND 7-Bolt 4g63 Front Case & Oil Pump Rebuild: https://www.youtube.com/watch?v=DPhyazI1fYc For 33 minutes I cover every oil filter housing including servicing information, rebuilding, modifying the oil filter housing, and the unabridged description of how oil pressure works in my 4g63 Oil Filter Housings video: https://www.youtube.com/watch?v=X88tw1UFs_M





Why so SIRIUS? Kia 4g64?
This video assumes you're aware that various iterations of the 4g series Mitsubishi engines are designated as Sirius I & II. For detailed information about which engines qualify as which, visit: http://en.wikipedia.org/wiki/Mitsubishi_Sirius_engine There's also this at EvolutionM: http://forums.evolutionm.net/evo-engine-turbo-drivetrain/278462-official-hyundai-2-4l-g4js -4g64-thread.html Good luck finding info about this using Hyundai and Kia in searches. Wikipedia doesn't have any info about it grouped with the Sonatas either. There is no question what this is, well illustrated in this video. I apologize for the length of this video, but a lot of ground is covered in a short time. Hopefully there's some information in here you may someday use. I'm just trying to expose it because there doesn't seem to be any real information floating around in the forums about this yet. The car is a first-generation 1999-2005 Kia Optima sedan. It has the EVO equivalent of a 4g64 2.4L. Before using any of these parts, do your research, cross-reference your parts and know what you're getting into. Using parts from this rotating assembly in a 2g Eclipse will require aftermarket rods and/or custom pistons. This is information for those who wish to frankenstein their builds, or save a buck... whichever.... either one of those requires skill.





4g63 Balance Shaft Elimination - bearing modification
This is the first part of a two part series about balance shaft elimination on 4g series engines. This video details the bearings, the other video will cover the front case modifications. I've already got a low-def video of the front case mods, and I plan to re-shoot that one in HD when I'm in the assembly phase. It's linked in the video. The balance shafts are designed to cancel out harmonic vibrations caused by combustion and the spinning rotating assembly. They may offer a greater degree of comfort to the driver and passengers, but with that comfort comes a price. Often, when a 4g63 timing belt gives up, it's because the balance shaft belt breaks or comes loose and takes the timing belt out with it. When that happens, it can total your pistons, valves, damage the crankshaft, wrist pins, timing belt tensioner and crank angle sensor. Basically, it can total your motor. The balance shafts also have a combined weigh over 10 lbs and both are driven off the timing belt making them additional and heavy rotating mass. If you've got a lightweight flywheel but still have balance shafts, you have your priorities mixed up. So here's what you do with the bearings. It's easy. You can do this at home. You CAN do it with the motor in the car, BUT DON'T. You must enjoy punishment to do this like that. The end result will slightly increase your oil pressure, but usually not enough to cause concern unless you have a full-circumference bearing turbo, ball bearing turbo--with your oil feed coming off the oil filter housing. The head feed would be better in that case because it's regulated at 15 PSI.





Mitsubishi 4G63 Honing with Torque Plate
See what a difference a torque plate makes on a Mitsubishi 4G63 block out of an Evo IX makes as John Edwards @ Costa Mesa R&D Automotiove Machine walks you through the steps. (949) 631-6376 Don't forget to 'Click' and SUBSCRIBE.





4g63 Timing Belt Parts
I don't care which DOHC 4g63 you've got. This is the video for you. All the parts and tools necessary to do the job right, right here. I know some people will ask about aftermarket timing kits. I'm not a fan. There are some things you can not skimp on. IMO, anyone using aftermarket parts on an interference engine have put the cart in front of the horse. Interference engines are engines whose pistons and valves share the same space at different parts of the strokes. If the timing belt (which is responsible for preventing them from doing that at the same time) breaks, or a pulley seizes up, then what follows goes something like this... "Hi piston, I'm valve", valve said. "Oh hey there, valve... Who's your friend that I just stepped on there?", said the piston to the valve. "Oh, her? That's my wife, and now she's a little bent out of shape now.", said valve. "I brought my whole crew, and they're next door introducing themselves to the rest of your friends.", piston uttered matter-of-factly. "So I hear. It sounds like they're done already.", said valve. "Yep, I'm afraid we are, too. Sorry about your wife there..." Aside from damage to pistons and valves, it can crack guides, damage rods and wrist pins, crank bearings, you name it. Worst case is when the valve face breaks off and chews up the cylinder head. No valve job will ever fix that. Use factory parts for your engine timing. MD326059 - OE 4g63 Timing Belt MD182295 - OE 4g63 Balance Belt MD972052 - 1g water pump MD972050 - 2g water pump MD129355 - Happy Face Pulley MD156604 - Timing Idler Pulley Water pump bolts: 1g 1x MF140029 1x MF140238 1x MF140026 1x Mf140028 1x MF140022 2g 1x MF140027 2x MF140026 1x MF140238 1x MF140022 Timing tensioners: prod. date MD164533 - 8904.3 - 9204.3 MD308586 - 9205.1 - 9405.1 MD308587 - 9401.1 - 9508.2 MD308086 - 9508.3 + 9999.9 Balance belt tensioner pulley: MD115976 - all 1g MD192068 - 95-97.5 MD352473 - 97.5-99





Cylinder Head 205 - Degree DOHC Camshafts
This video is all about establishing your valve timing baseline, and adjusting your camshafts to the manufacturer's spec. It's only ONE of several steps that should be performed when you're assembling your engine on an engine stand. Establishing these conditions with accuracy while your engine installed in the car is a near-impossibility, and the reason why... is demonstrated in this video. There are several challenges to overcome when performing these procedures on a 4gxx series Mitsubishi engine, and they're all defeated here. The cylinder head used in this video is a J1 spec '92 Hyundai Elantra small-combustion chamber head which has had several valve jobs and has been resurfaced multiple times by budget engine remanufacturers who didn't care about quality control, as well as performance shops who do. It has had no less than .040" removed from the head gasket surface, the valves are recessed because of all the valve jobs performed, and at some point when it was cut, it wasn't level. Removing material from the deck surface will change the installed camshaft centerline, and that will change your engine's valve timing events even if all other parts remain the same. I would claim this is a multi-part video except that I've got the videos broken up by topic already, and this one is all about setting your cams to the manufacturer's specification. It is not the end of testing that will be performed with these tools. The basics concerning the process and tool fabrication are covered here. Further discussion on this topic concerning the effects of advancing or retarding camshafts from spec, and for checking your valve clearance will be in the videos that follow. I had to end this video after the manufacturer's spec was achieved to make it easier to digest, and because it would have created a video greater than one hour in length despite the break-neck speeds that things happen here on Jafromobile. Where your cams are set determine how the swept volume of the combustion chamber gets used. The information on the manufacturer's spec sheet is their recommendation for baseline settings that will help you get the most out of those camshafts. Whether or not your engine can operate with those specifications without additional hardware or without causing a catastrophic failure will be expanded upon in Cylinder Head 206. The next video should be used as a companion to this video because establishing the manufacturer's baseline is not the end of the assembly or testing process. It's only half the battle. Should you be lucky enough to find your combination of parts allow your camshafts to fit and requires no additional adjustment after assembly, the steps in this video and in Cylinder Head 206 should still be performed if you are doing the assembly yourself. Failure to inspect these variables may lead to a tuning nightmare once the engine is back in the car, hard starts, or worse... bent valves and damaged wrist pins. Making these tools and performing these steps will give you the peace of mind to know with certainty that your engine is operating safely at its peak performance.





Cylinder Head 107 - 4G63 HLA Lifter Tech
I have all 3 revisions of the DSM lifters in this video. This will help you identify which ones are in your cylinder head, as well as illustrate the cleaning process, and each lifters' advantages and disadvantages. WHEN you finally have to perform maintenance on these lifters, they're a bigger pain than a solid lift valvetrain is (ONCE). BUT if you follow the service schedule on a solid lift valvetrain, HLA's are a smaller pain overall. You'll never need feeler gauges to adjust these hydraulic lifters, and you'll never need to know their gap. You can't adjust them. You'll just know whether or not they're good by the amount of noise they make. 3 things can cause trouble with them. Clogged lifters, insufficient oil pressure, or insufficient oil volume. So before you sail your oil pump down the river, you can follow the steps in this video to rule out the first variable. You can actually remove and re-install them without taking the timing belt or camshafts out, but that will be another video. Chances are you already know this. The second and third potential issues COULD be your oil pump, but for your oil light isn't on and if there's ever been machine work in its past history to either the head or the block, I explain in "Cylinder Head 103 - Deck Tech" what a frequently-overlooked part of the cylinder head is that could be a contributor to the issue. That link is in the video. I MENTIONED ANOTHER COOL VIDEO: it was here... http://www.youtube.com/watch?v=lorANZ1Tptw Thank that author as well. He did a great job! I don't know the guy and claim no credit to his work, I'm just giving him a shout-out.





Blueprint 102 - Measuring 4g63 Crankshaft Endplay
4g63's are famous for hosing crankshaft thrust bearings. This video illustrates the process of how to check the thrust bearing clearance whether the motor's in the car or not. Of course in my case the motor's on a stand for this video. Lucky for me! In cases where the engine is still in the car, the same procedures can be used so long as the indicator is attached to the engine block. The plunger can be set up touching either the inside of the crank pulley or by removing the clutch cover plate and contacting the flywheel. What the thrust bearing does, is prevent the crankshaft from having lateral movement in the main bearings. If a crankshaft develops excessive movement here, clutch engagement and hydraulic problems will begin showing up, followed shortly thereafter by catastrophic failure of main bearings, rod bearings, connecting rod failures, oil pressure problems, or even broken blocks, crankshafts and rods in extreme cases. It's important that every 4g63 turbo engine is within spec on this measurement. When the crankshaft aggressively wears through the thrust bearing developing lateral play, this is called "crankwalk". On some block castings, replacing the bearings will NOT fix the problem. An engine block that is prone to crankwalking can not be fixed. The only option in these cases is to replace the shortblock and rotating assembly with new or used parts that are stronger than the one you've unfortunately encountered. For the 2g guys, the best option for repairing this problem is to remove the 7-bolt turbo shortblock your car came with and replace it with a 6-bolt from a 89-92.5 production date turbo DSM. Non-turbo blocks CAN be used; however, the block will not have oil squirters that aim towards the back of the pistons. That stream of oil aides lubrication to the wrist pins, cylinder bores, and somewhat cools the pistons. All good things on a turbo setup. Aside from that difference, there are no other differences between the non-turbo and turbo blocks. The pistons and thus the compression ratios are different, but that's it. Oil squirters can be machined into the main galleries of a non-turbo block, but it's more trouble than it's worth unless you can't find a turbo block. There are tons of differing theories about what causes crankwalk. Nearly all of them are plausible and logical arguments. I will not get into those debates in this video in order to focus on procedures for testing and replacement. Please feel free to google "crankwalk 4g63" and read the volumes of information available already. The arguments and gathered data are older than the Eclipse itself and in abundant supply on the internets. Magnus, RRE, VFAQ, and many other parts vendors have lengthy write-ups on their own research and development. The bottom line is that the 6-bolt shortblocks are LESS likely to suffer from this. Next time you see someone with a video that looks like it was shot with a potato asking "does this sound like crankwalk", you can send them this video. There's a reason for every noise, rather than focus on the sound, focus on eliminating the real problem. KNOW if it's out of spec.





Hyundai Assembly 6 - Manifolds & Turbo
I love music videos. They're so much easier to narrate. I don't want to upset anyone by not providing commentary about what I'm doing or where this build is going... and this is the video where all that stuff comes together. Quite frankly, I missed you. I really enjoy these little talks we share. In this video is a little fabrication, maintenance, comparison and assembly. Un-boxings, cleanup, break-fix... Variety! You know... The stuff that keeps happening as you wrap up any build. It's not a longblock until it has manifolds, and a turbo build has a few more things than just that in order to make it complete. My attention has now turned towards preparing the chassis and accessories for installation and I promise there will be more involved videos following this one for the hardcore auto techs. Whether you're watching or wrenching on this one, all this stage does is create anxiety for wanting to hurry up and finish the install, but don't rush. Do it right! These are the non-reusable parts for the turbo install. ALL of the other part numbers in the video were shown: MF241255 x2 Oil Drain Bolts (upper) MF101229 x2 Oil Drain Bolts (lower) MF660031 x2 Oil Drain Gasket (washer) MR258477 x2 Oil Drain Gasket (flange) MF660064 x2 Oil Feed Crush Washer (turbo) MF660063 x2 Oil Feed Crush Washer (head) MF660065 x4 Coolant Crush Washer (turbo) MD132656 x4 turbo Bolt (M10 x 80 x 1.25mm) MD132933 x8 turbo Spring Washers Thank you all for keeping up with this build. Thanks especially for the kind comments and interest in this project! You guys are the best!





Glyptal Application Process
In this video I detail the application process of a popular crankcase coating... that is... if crankcase coatings are actually popular. In this video, 98 coffee filters gave up the ghost. 238 q-tips paid the ultimate sacrifice. Almost a dozen brushes were executed, and 3 aerosol caps dispatched to their graves. Also, during the battle, several Dremel tools were maimed, one severely. Look, I'm doing everything I can to liven this topic up and make it interesting. Cleaning and painting are about the least interesting things someone else can watch. It's absolutely painful to edit, I know that much. It's not so bad for the guy doing the actual painting, but I'm doing my best to keep people's attention. This is a full month's work in a half hour. I had to space the job out because of my filming environment and the toxicity of materials I was working with. Take my warnings and advice in the video seriously. They're the words of someone who's done the job. They help set expectations. The most useful thing I can do is post links to other discussions that have already occurred, and to make room for places where people have posted their experience with failures of engine coatings. Despite my searching, I can not find any pictures or video. I found ONE plausible description of the kind of failure that can occur with improper application, but it was still a third-hand report. There are fans of this product posting in these threads. If you are considering this treatment, WEIGH THE PROS & CONS FOR YOUR BUILD, and YOUR HEALTH. Don't do this just because I did it. So until anyone provides photo or video evidence, here are the links to threads where it was discussed. This google search is mean. It's too direct and to-the-point. It might hurt somebody's feelings? Yes, I've read them all. http://www.google.com/search?client=safari&rls=en&q=glyptal+caused+engine+f ailure&ie=UTF-8&oe=UTF-8





Hyundai 4g63 Assembly Part 3
I have bad news. The big camera's playback heads bit the dust from extensive prolonged use. I wore out the tape drive. No manner of cleaning tapes can fix what it's been through. I've talked many times about how much footage goes into one of my 15 to 30 minute videos, and for every hour of video footage I've shot, the camera does double-duty because after shooting, it has to be played back in real time during capture. I've done more than 130 videos this way, probably over 2000 hours of use in the harshest of environments, and it just couldn't handle it any longer. I shot several more tapes beyond what's in this video that I can't even import because the play heads failed. I don't know if any of that video even stuck to the tapes? The lost footage from the last video was an early and un-recognized sign of what was soon to come. I know I joked about it, but in reality it's really not very funny at all. I can't afford a backup for a piece of equipment like this, so it's something I don't have. As bad as this news might feel to you, I feel it 21,000 times over and I mean that. This couldn't come at a worse time and expense for me, and at a point where my production was really starting to wrap up on this project to move on to bigger and better things. It's the only camera I have that can do what I do here on this channel, so I'm forced to stop production for now. Even though my camera is huge, 7 year old HDV technology, these things still sell for several thousand dollars used because they record un-compressed video unlike every other flash storage based solution available at twice the price. 3CCD 1080/60i HD cameras that shoot to tape have advantages that you can't affordably achieve with solid-state media. I have to use un-compressed footage to do what I do here or else there's nothing left of the video quality after 7 exports and a final mpeg compression. The Sony Action Cam can't do it, we learned that in a previous test video. Even if it could, it can't do close-ups and everything's fisheyed. Buying a low-end 4K camera is impractical because I can't efficiently or effectively edit that video without a $9,000 computer. Jafromobile is just not that big of a channel, and I do this completely un-sponsored and at my own expense with the help of a handful of friends who volunteer their talent, time and information. It's the epitome of low-budget and what it earns still doesn't come close covering the channel's equipment and expenses as they occur. People have urged that I do a kickstarter, but I can't bring myself to ask for that from the community. I don't sell a product or offer services so there is no profit margin. I can't accept money for something that happens only at the speed of my available resources. To me, this channel is my proverbial gift horse to all of you. http://en.wiktionary.org/wiki/don't_look_a_gift_horse_in_the_mouth I know what you're thinking and I realize this is a grim conclusion to this video. It sounds like I'm down for the count, but don't rush to the down vote button just yet. As of the upload date of this video, I'm paying out of pocket to fix a ridiculously expensive 3CCD 1080HD broadcast quality video camera so that these projects can resume, and so that I can bring the final assembly steps to you in the same quality you've grown used to seeing here on Jafromobile. If I wear out a camera every 3 years, then so be it. This is love, and no expense is too great. The big camera is being fixed by its manufacturer, and I'm expecting the repair to cost as much as replacing it. I sincerely hope that's not the case. Hopefully my production only has to take a short break. Once production resumes and I can import these tapes, I've got some really awesome stuff coming up and I hope every last one of you is here to see it. I may have a few other backlogged nuggets I can upload, and as always I'm happy to discuss this in the comments and provide updates on the repair as I get them. Update: Awaiting quote due by 5/16 according to the repair agreement. 5/9/2014 9:17:00 AM DELIVERED NEWPORT NEWS, VA US 5/9/2014 5:36:00 AM DESTINATION SCAN NEWPORT NEWS, VA US 5/9/2014 12:04:00 AM ARRIVAL SCAN NEWPORT NEWS, VA US 5/12/2014 - Repair paid in full $440. Far less than I was expecting. I'm glad they still make parts for 7 year old professional equipment. Thank You Canon, USA! Repair should be complete within 7 business days from receipt of payment. The quote only took them 24 hours and they quoted a week just for the estimate, so at this rate I should be back up and running once again very soon. Thank ALL of you for your kind words, HUGE generosity, and all of the moral support. I swear I have the best subscribers on YouTube!





Which car is faster? Which Car is Faster?




Similar 1/4 mile timeslips to browse:

2005 Mazda 6 Drag Car: 7.930 @ 187.000
Ed Bergenholtz, Engine: 2.3L Mazda i4 by Golden Eagle Mfg., Supercharger: None Turbos: Garret GT45 Tires: M & H


2006 Mazda 6 Mazdaspeed: 11.381 @ 123.940
Anthony Pannone, Turbos: ATP GTX35R Tires: Conti DWS 215/45/18


2006 Mazda 6 Mazdaspeed 6: 11.612 @ 119.220
Anthony Pannone, Engine: 2.3l MZR DISI, Turbos: GT3076R Tires: hankook evo V12


2006 Mazda 6 Mazdaspeed 6: 12.011 @ 113.930
Andrew , Engine: 2.3 MZR, Turbos: GT3071R Tires: Federal SS


2006 Mazda 6 Mazdaspeed 6: 12.240 @ 114.270
Anthony Pannone, Engine: 2.3L MZR turbo, Turbos: GT3076 Tires: hankook evo V12


2007 Mazda 6 Mazdaspeed: 12.263 @ 111.750
Rich Brockman, Engine: Stock, Supercharger: n/a Turbos: Stock Tires: 225 55 17 Conti DWS Extreme


2007 Mazda 6 mazdaspeed6: 12.301 @ 113.200
Jeff Hawkes, Engine: MZR 2.3T, Turbos: stock k04


2006 Mazda 6 sport: 12.370 @ 111.000
charles, Engine: 2.3, Turbos: 7 blade gt3076 ported .55 a/r hotside Tires: nitto neo gens 245/35/19


2007 Mazda 6 MPS: 12.501 @ 112.000
MazdaGaragePat, Engine: MZR 2261 cc, Turbos: Garrett GT3076 T3 divided 1.06 Tires: 235/40 R18 Federal 595 RS-R


2006 Mazda 6 mazdaspeed6: 12.550 @ 109.000
charles, Engine: 2.3l, Turbos: gt3076 Tires: Bf goodridge kdw 235/35/18


2007 Mazda 6 Speed6: 12.620 @ 110.090
p057, Engine: stock, Turbos: gt3071 Tires: hankook ventus v12s 225/40/18


2006 Mazda 6 speed6: 12.624 @ 107.800
charles, Engine: 2.3 turbo, Turbos: gt3076 Tires: NITTO NEO GENS


2006 Mazda 6 Mazdaspeed 6: 12.655 @ 111.360
Anthony Pannone, Engine: stock, Turbos: GT3076R


2006 Mazda 6 Mazdaspeed6: 12.655 @ 111.750
Andrew Helm, Engine: stock block, Turbos: GT3071r Tires: Nitto NT555


2006 Mazda 6 mazdaspeed6: 12.850 @ 105.850
Michael, Engine: 2.3 disi turbo, Turbos: stock Tires: stock


2007 Mazda 6 Mazdaspeed6 GT: 12.896 @ 104.740
2nr, Turbos: stock


2006 Mazda 6 Mazdaspeed 6: 12.907 @ 106.750
superskaterxes, Engine: 2.3l MZR DISI, Turbos: k04


2006 Mazda 6 Mazdaspeed: 12.918 @ 103.460
Shawn C, Engine: 2.3 DISI, Turbos: Stock


2006 Mazda 6 Speed 6: 12.991 @ 107.780
jcgemt2003, Engine: 2.3, Turbos: stock


2006 Mazda 6 Speed 6: 13.017 @ 104.610
cm-jp1, Turbos: Stock k04


 


©2015 DragTimes - Disclaimer - Contact Us