Drag Racing 1/4 Mile times 0-60 Dyno Fast Cars Muscle Cars

CRANKWALKED? 7-bolt teardown 1080HD

Now this is a story all about how My bearings got flipped-turned upside down And I'd like to take a minute just sit right there And tell you how I used to mix and burn my gas and my air. In RVA suburbs born and raised On the dragstrip is where I spent most of my days Chillin out, maxin, relaxing all cool, 'n all shooting some BS outside with my tools When a couple of guys who were up to no good Started running races in my neighborhood I heard one little knock and my rods got scared And said "You put it in the garage until you figure out where..." I Begged and pleaded that it not be that way, But it didn't want to start and run another day. I kissed it goodbye, because the motor punched its ticket I got out my camera, said "I might as well kick it." Crankwalk yo this is bad Drinking metal shavings from an oil pan. Is this what the rumor of crankwalk is like? Hmm this won't be alright But wait I heard knocking, grinding and all that Is this the type of failure that should happen to this cool cat? I don't think so, I'll see when I get there I hope they're prepared for this video I share. Well I pulled all the bolts and when I came out There were chunks in my fluids in the pan and they drained out I aint all depressed cause I seen this before. I got my books and my wrench and we'll do it once more. I sprang into action like lightning disassembled I whistled while I worked and my hands never trembled If anything you could say that this bling is rare, and when I saw what broke I stained my underwear. I turned off the air compressor 'bout 7 or 8 And I yelled to crankcase "Yo holmes, smell ya later" I looked at my internals they were finally there To sit on my workbench and stink up the air. Audio track by RojoDelChocolate. Here's the 48,000 mile-old 7-bolt I blew up summer 2011 after over 150 drag passes, a half dozen Dyno sessions, 4 transmissions, 3 clutches and 10 years of hard all-weather use.


 


More Videos...


7-Bolt Shortblock Failure - Full Diagnosis
If you are your own mechanic, there is no more important character trait worthy of development than the ability to own your mistakes. That's where the line is drawn between good mechanics and bad mechanics. It's not the failures but how they deal with them that measures their ability. In short, it's not easy to admit you did something wrong or were negligent. But if you don't own it and talk about it, it doesn't get fixed, and nothing positive can come from it. It was my quest to overcome my clutch issue that lead to the creation of a video. That video is the textbook perfect guide for how to correctly install a DSM transmission. https://www.youtube.com/watch?v=6bE_9sWtnSY&list=PL4B97C16D423317DD Crankwalk as described is caused by a casting defect. This was not a defect. This was preventable. A lot of people would find something like this and not tell anyone out of embarrassment. I'm not ashamed. It's my fault. I got good use out of this engine and it was tough enough to make it 48K miles since the last rebuild despite my abuse. I'm here to tell you if you bought a used car that's had its clutch replaced, or if you ever pay someone else to do it... make sure it has this bolt. It's stashed away between the starter and the transfer case, so it's hard to see. Make sure all of your bell housing bolts are torqued properly because fastener problems can destroy your shortblock, clutch and transmission. If your car fails because of a mis-aligned transmission, you have no reason to blame crankwalk. It wasn't until I bought my next AWD car that I discovered there was a smaller bolt on the other side of the block. I destroyed 3 transmissions in the GSX first. With the damage already done to my crankshaft, I then lost a shortblock. It's an ounce of prevention that's worth metric tons on your bank account. Grade 10 M8x60 bell housing bolt = MD706012. It gets 22-25'lbs of torque. Owning my mistake permits me to learn from it through con$equence$, and never repeat it. What good would it have done anyone else for me to learn this lesson and not share it? That's why I'm providing this video to all of you. Sharing it can perhaps help someone else avoid this costly mistake. This is the final chapter for my 7-bolt, and this book is going back on the shelf. Here are some valuable resources if you're trying to read bearing damage: http://www.enginebuildermag.com/Article/5150/csi_engine_bearings_when_good_ bearings_go_bad.aspx http://catalog.mahleclevite.com/bearing/ http://www.studebaker-info.org/tech/Bearings/CL77-3-402.pdf And of course, now that I've covered the complete oil system, transmission and driveshaft series of videos, you now have all the tools necessary to ensure your 4g63 lasts a very long time. Whether the casting defect exists?... or it's all caused by a bolt, or the harmonics, or whatever... Sure, crankwalk exists and it's horrible. But with the small amount of movement required for your crankshaft before it contacts the block isn't far enough to make your clutch drop to the floor when you turn. You'd be hearing woodpeckers and jackhammers on the crank long before that clutch pedal would fall to the floor. Some people are going to hate on me for saying that. That's fine. I believe all of the people who experienced the clutch pedal issues had fastener problems on their bell housing. DSMs get a bad reputation for this but we can change that. Crankwalk is never the cause of your engine failure. Crankwalk is always a symptom of the real problem. It's your disease that makes you deny it's your fault. You've got the 'itis. DSM-itis. Whenever you dig deeper, you'll discover what applied all of those thrust loads to your crankshaft to begin with, and it's not going to be a casting defect that moves your crank .101". Mine only went .014", but all of the same parts failed. PLEASE tell me in the comments if you find this bolt is missing from your car.





Crankshaft Refurbishing
Many of you have seen this one before. I apologize if bringing it back offends anyone. Domestickilla gave me a crankshaft, and it's a nice one that I want to clean up and use again. You'll be seeing a lot of it and because of this, this video deserves to be here. I fixed what I broke, and this was my experience. In this video Ballos Precision Machine demonstrates magnetic dye penetrant testing, crankshaft polishing and inspecting the balance of a "butchered" 4g63 6-bolt crankshaft.





How to Rebuild a Turbo - Part 1 of 2
Rebuilding a td05h 16g turbo. This process can be applied to many journal bearing turbochargers. :) It definitely comes in handy to know how to do this when you are in this type of hobby. 4/25/12: Small explanation on the balancing of the rotating assembly since I get so many comments regarding it. This particular turbocharger, td05h, has its rotating assembly components balanced separately. This means each individual part (compressor wheel, turbine wheel/shaft) gets balanced separately. This allows for easy interchangeability of parts in case they need replacing. This is why I am able to install a td05 20g wheel on this turbo without having to balance the entire rotating assembly. THIS IS NOT THE CASE FOR ALL turboS OUT THERE. You need to research whether your specific turbo (if it's not td05h) was balanced as an assembly or "component balanced" like I explained above. I hope this information helps. Good luck in your projects. Stay Boostin' keywords: turbocharger dsm eclipse talon awd gsx tsi fwd gst mitsubishi evo evolution lancer 14b 20g td06 td06h td05 install installation upgrade race vs Boost supra wrx sti toyota subaru Dyno laser rs rst 13g hx35 hx40 holset 18g 25g sbr t25 stock replace rebuilding big large nissan 240sx t28





CAT Engine Teardown TimeLapse
This CAT diesel engine had a million miles on it and was in perfect condition upon inspection. Sindall Transportation in New Holland, PA did the disassembly.





1998 Civic Engine Tear Down (Part 4) - EricTheCarGuy
Link to full engine R&R video: http://www.ericthecarguy.com/vmanuals/22-vmanual-store/149-1998-honda-civic -16l-engine-replacement-vmanual http://www.ericthecarguy.com/ Remember this guy? Yep since I'm moving I had my scrap picked up and this was still in the shop collecting dust so I decided to do the tear down on it, I'm glad I did because I got a nice little keepsake out of it. BTW don't yell at me for using my impact lets face it, this engine is scrap! --- Click below and Stay Dirty Visit me at EricTheCarGuy.com http://ericthecarguy.com/ Visit EricTheCarGuy Forum http://www.ericthecarguy.com/forum/default.aspx Visit my Facebook Page: http://www.facebook.com/EricTheCarGuy --- Stay dirty ETCG





JMS Racing - 906hp Evo - Forced Performance T3 HTA3794
Follow us on facebook! http://www.facebook.com/pages/JMS-Racing/168686186475891?ref=ts&fref=ts 210-310-1729 JMSTuning@gmail.com JMSRacing.net





How It's Made High Performance Engines
How It's Made High Performance Engines





4g63 Balance Shaft Elimination - bearing modification
This is the first part of a two part series about balance shaft elimination on 4g series engines. This video details the bearings, the other video will cover the front case modifications. I've already got a low-def video of the front case mods, and I plan to re-shoot that one in HD when I'm in the assembly phase. It's linked in the video. The balance shafts are designed to cancel out harmonic vibrations caused by combustion and the spinning rotating assembly. They may offer a greater degree of comfort to the driver and passengers, but with that comfort comes a price. Often, when a 4g63 timing belt gives up, it's because the balance shaft belt breaks or comes loose and takes the timing belt out with it. When that happens, it can total your pistons, valves, damage the crankshaft, wrist pins, timing belt tensioner and crank angle sensor. Basically, it can total your motor. The balance shafts also have a combined weigh over 10 lbs and both are driven off the timing belt making them additional and heavy rotating mass. If you've got a lightweight flywheel but still have balance shafts, you have your priorities mixed up. So here's what you do with the bearings. It's easy. You can do this at home. You CAN do it with the motor in the car, BUT DON'T. You must enjoy punishment to do this like that. The end result will slightly increase your oil pressure, but usually not enough to cause concern unless you have a full-circumference bearing turbo, ball bearing turbo--with your oil feed coming off the oil filter housing. The head feed would be better in that case because it's regulated at 15 PSI.





Building a 4G63T Engine in 10 minutes
Engine building





Cylinder Head 203 - Valve & Spring Installation
There are 2 critical values in getting your valvetrain geometry correct. Valve install height and spring install height. On some models of cylinder heads, getting these values is easier than it is on a 4g63 cylinder head. On the first Glyptal video, you heard me complain about the complexity of the casting and how hard it was to reach all the nooks and crannies while applying that coating. The casting is very complex on a 4g63 head. There are hydraulic galleries for the lifters elevated above the valvetrain surface which make accessing each valve bore with precision measurement tools very difficult. It's because of this that you need to do some math to get these values correct. Stuart is going to show you the process for obtaining the stem height and spring height values on a 4g63 head. Using these numbers you can determine other work necessary to correct the spring height value to correct seat pressure, and ensure you have adequate valve travel for your springs to work correctly. It looks like rocket surgery, but really it's pretty simple. The ultimate goal is to get every valve spring in as close proximity to one another as you can, while doing your best to nail the recommended specification PROVIDED BY THE VALVE SPRING MANUFACTURER. Loose valve springs can result in leaky valve seats, valve bounce and deflection that will drastically shorten the life of the valvetrain. If valve bounce is severe, it can cause engine-killing interference with the pistons Tight valve springs can cause excessive valvetrain vibration generated by the force necessary for the camshafts to push them open. On the narrow side of the spectrum this can increase friction on the cams which can wipe lobes and shorten their lifespan, and on the severe end in not only increases the likelihood of wiping a cam lobe, it can lead to binding valve springs and crashing the valvetrain. You have to hit the sweet spot. Valve springs specifications include several variables that help you achieve these goals. The manufacturer rates their springs for their installed pressure and height. They have a compression limit referred to as valve spring bind which tells you how far you can compress them from their installed height before the coils begin to bind and the spring stops compressing. The valve springs used in this video are rated at 97lbs @ 1.440" installed, and .500" lift. This means they should bind at .940", but my cams will only generate .433" lift, giving me plenty of head room at the top (.067") to prevent binding if they are installed correctly. One thing we found which I wasn't expecting is they're a little on the stiff side of spec. We measured 100lbs at 1.452", so rather than risk setting them up too tight, that's where we set our tight specification. This decision was made because if the rated pressure is lower than our actual measurements, this would in theory decrease the lift specification and increase the possibility of binding. Our install pressure ended up still higher than spec with a barely-larger-than-spec spring installed height. I don't consider this a defect. It is close enough within the margin of error that it shouldn't cause any problems, and anyone doing this job right will measure and check all of these specifications to ensure these parts are what they say they are. That's what you watched us do. I'm confident that this will work because the 4g63 utilizes a hydraulic self-adjusting valvetrain. If the stem height is too high, it can be reduced by grinding the ends of the valve stems to shorten them. This will have no affect on spring installed height when the parts are assembled, however; it will change the amount on paper that you'd need to subtract from the stem height in order to accurately calculate spring installed height. If any of the valves have been ground to shorten their stem height, all of the valves should be measured separately with their retainers and keepers assembled, and that new value subtracted from stem height individually to obtain each spring installed height. You can't reduce this value any other way short of replacing the valve seat. If the valve stem height is too low, you can modify the valve seat or machine the valve spring perches (seat or retainer) to increase the size of the spring installed height. Another method would be to cut the valve seat deeper to recess the valve. In my video, we show this whole process on a brand new set of Supertech valves. All of them are identical, and all of the retainers are new and identical. Because of this (and yes we checked it), and because no valves required any grinding, we only needed to use one value in our math for all 16 valves. Hopefully this video clears up the process and covers the options available for making changes if they're necessary. If you land within 3% of spec, you've done your diligence in achieving correct valvetrain geometry.





4g63 Block Oil Gallery Mod
This modification is intended to improve your 4g series engine's oil delivery. People frequently discover large chunks of flash in their engine's main oil gallery. It's because the galleries are part of the cast, they're not machined into the block. There is also a very rough sharp edge where the main oil gallery is bored into the block, and oil must make a slightly greater-than 90° turn in order to begin its course to the parts it lubricates. Both of these conditions cause turbulence in the oil flow. My goal in this video is to eliminate as much of that as I can. This is a cheap and easy modification if you have the tools, and the patience. Any engine with cast-in oil galleries could probably benefit from this. Be careful not to cut into the high pressure oil gallery or else you will circulate un-filtered oil to the #1 main, oil pump, and rear balance shaft. You will also deprive the rest of the engine the oil pressure it needs to operate. So in short, punch a hole in that and it's trash. I did this my way, everyone may choose to do this a different way. I just wanted to make this video to raise awareness. Also, there's a great thread on DSMtuners about this. Pictures and everything. Written by a machinist and friend of the DSM community. Go give him some reps because he's posted a lot of great info about the DSM oil system over the years. http://www.dsmtuners.com/forums/articles-engine-fuel/452546-4g63-block-oili ng-mod.html





Blueprint 108 - inspect the deck
There's a reason why there are no subtitled specifications in this video for the block. It's because they don't exist in either service manual, 1g or 2g. You're not supposed to remove material from a block on the deck surface because it has ill effects on parts of the combustion chamber geometry, and alters your compression ratio. It can be done intentionally in some cases for a desired side-affect, but if you have to deck a 4g63 head, it would be advised to use a thicker head gasket. The Mitsubishi Multi-Layered-Steel or MLS gasket is slightly thicker than the OEM composite gasket. Also, HKS, Power Enterprise, Cometic, and other performance brands all make MLS gaskets that are .065 and thicker. THERE IS ONE ERROR IN THE VIDEO. I said a block with .002" warpage is junk. I was completely and totally wrong. While I don't wish to spread misinformation, I don't think it's a big enough error to warrant re-editing this video. I just wasn't paying attention. .002" warpage on a cylinder head is the service limit before it needs machining. I meant to say .02"... or two HUNDREDTHS (not thousandths) of an inch. ...and here's my justification... A warped block to me is junk either way even if its minimal because your MLS gasket will never seal unless both the head and the block are perfectly flat. Trust your machine shop to get the values for how much is taken off, and buy the correct thickness gasket for your machine work. A factory head gasket (composite) is .051" The MLS Mitsubishi gasket is available in the stock .051 and a .062" Cometic makes gaskets up to .072" There are some brands that go as high as .127", but I'd have thrown both the block and head away long before then.





► Bentley Factory - W12 Engine
► If you love cars, you should subscribe now to YouCar's channel: http://urlz.fr/lEd Go ahead, it's free! All the Best.





Rebuilding a Dodge Neon in 10 min.





Marios Eclipse GSX 400HP ST2 project
HEY HOWS IT GOING, IV BEEN BUILDING THIS CAR OVER THE LAST YEAR AND AM PLANNING TO RACE IT NEXT SEASON IN THE NASA ST2 CLASS. I USED TO HAVE MY PRO LICENSE ROADRACING STREETBIKES BUT BROKE MY NECK A LITTLE OVER 5 YEARS AGO NOW SO IM NOW A C5-C6 QUADRIPLEGIC. SO I BASICALLY JUST PREMATURELY GRADUATED FROM 2 WHEELS TO 4... LOL THE CAR SHOULD BE PRETTY FUN ONCE I GET A NEW TRANNY FOR IT IT WILL DO PRETTY WELL I THINK. ILL POST MORE THROUGH OUT THE SEASON. CHECK OUT MY BLOG AT KEEPEMSPINNINRACING.BLOGSPOT.COM THANKS FOR WATCHING AND GOD BLESS.





Which car is faster? Which Car is Faster?




Similar 1/4 mile timeslips to browse:

1979 Chevrolet Caprice Classic Coupe: 9.625 @ 147.000
Peter, Engine: BB Chevy 496 td, Tires: MH


1971 Chevrolet Caprice : 10.400 @ 127.600
Andy Warren, Engine: 427ci Small Block N/A, Tires: Mickey Thompson 28x10.5


1984 Chevrolet Caprice 2dr: 10.768 @ 124.740
YEPPER, Engine: 434 SBC, Tires: HOOSIER


1971 Chevrolet Caprice 2 Door 406 SBC: 10.800 @ 123.600
Andy Warren, Engine: 406 SBC All Motor, Tires: Front: ET Drag 27x4.5, Rear ET Drag (radial slick)


1984 Chevrolet Caprice 2dr Coupe: 11.085 @ 120.710
YEPPER, Engine: 434ci Small Block Chevy, Tires: BF Goodrich / Hoosier


1971 Chevrolet Caprice : 11.226 @ 116.860
Andy Warren, Engine: 406ci Small Block Chevrolet, Tires: M/T


1977 Chevrolet Caprice : 11.695 @ 113.990
Rich Schneer, Engine: 400 SB Chevy, Supercharger: - Turbos: - Tires: Hoosier Q/T Pro/Moroso Frnt.Runners


1981 Chevrolet Caprice : 12.316 @ 111.350
Brandon Furches, Engine: 350 .020 over,


1994 Saturn SC1 : 12.520 @ 107.782
Sean mcGuigan, Engine: 1.9 DOHC, Tires: 26x8.5x15 MT slicks


1973 Chevrolet Caprice : 13.350 @ 108.000
branden shaffer, Engine: 383 stroker,


1977 Chevrolet Caprice : 13.376 @ 107.170
Richard Schneer, Engine: 355 Chevy, Tires: M/T Front Runners-Hoosier Quick Times 275-50-15


1993 Saturn SC1 : 13.694 @ 101.290
Jim Hoffmann, Engine: 2002 DOHC short block/96 head, Supercharger: no Turbos: no Tires: 195/50R15 M/T ET Street


1994 Chevrolet Caprice : 13.804 @ 98.100
Dan Dziuba, Engine: LT-1 165,000 miles, Tires: 235/60/15 drag radials


1991 Chevrolet Caprice Classic: 13.963 @ 97.230
Dan Pepper, Engine: Chevrolet 350, Tires: MT ET streets.


1994 Chevrolet Caprice LS: 14.142 @ 97.050
Jason, Engine: 350 LT1, Supercharger: none Turbos: none Tires: 275/60/15


2011 Chevrolet Caprice Cop package: 14.330 @ 99.000
Matt, Engine: 6.0L RWD, Tires: stock


1988 Chevrolet Caprice Wagon: 14.617 @ 94.070
Jake, Engine: ZZ4, Tires: 255/70/15 all around


1996 Chevrolet Caprice : 14.660 @ 93.400
bryan, Engine: 350 lt1, Tires: 235/70r15 michelein xw4


1995 Chevrolet Caprice Classic: 14.677 @ 95.039
Tony Alcorn, Engine: 350 LT-1, Supercharger: n/a Turbos: n/a Tires: Uniroyal TigerPaw 235/70R15 (45 psi front and 20 p


1995 Chevrolet Caprice 9C1: 14.809 @ 92.400
Mike Guardino, Engine: Stock LT1, Tires: Stock 9C1 Goodyear 225/70/15's


 


©2014 DragTimes - Disclaimer