Drag Racing 1/4 Mile times 0-60 Dyno Fast Cars Muscle Cars

Chevy 216 Engine running for sale

Chevy 216 Engine running for sale. Every lowriders choice


 


More Videos...


How to Assemble a Chevy Engine Part 1
This video will show you how to assemble a Chevy engine (or any engine) starting from the basic block. It goes through installing the crankshaft, checking for the right clearences using plastic gage, installing the rings on the pistons, installling the piston in the block, checking the rod bearing clearence, torquing all the bolts to the collect specifications, installing the rear main seal, and demonstrating how the motor works from the bottom view and top view.





Chevy 350 Engine Rebuild Part 7
Installing Lifters, Push rods, & rocker arms. Also, adjusting rockers. This is part 7 in a multi-part series on rebuilding this engine. Thanks for watching!





Firing up A Brand New Chevy 409 Engine
My dad and I built a Chevy 409ci engine, and we fired it up for the first time today. It has a roller camshaft and valve train setup, so it didn't need the always worrysome break in procedure that a flat tappet engine requires. This video is from the second time we ran it, as we had to shut it down on the first try, due to a coolant leak. All of the smoke is from the anti-freeze on the headers, and the fact that they're brand new headers. Here's a spec list on the engine: 1963 Chevrolet 409 block (stock bore) 1961 409 forged crankshaft Stock connecting rods 1963 high performance forged pistons 11:1 compression ratio Clevite bearings Hastings rings Felpro Gaskets ARP Main Studs, Rod Bolts, Head bolts, and accessory bolts Edelbrock Performer RPM aluminum cylinder heads Comp Cams hydraulic roller 236/242 duration at .050-inch lift, .578/.593 max lift, 110 LSA Comp Cams roller lifters, pushrods, Comp Ultra Pro Magnum 1.7:1 rocker arms Edelbrock Performer RPM dual quad intake with dual 500cfm four-barrel carburetors Edelbrock as-cast finned aluminum valve covers (air cleaner not pictured) Edelbrock aluminum water pump Pertronix billet distributor, coil and plug wires Hooker 1-7/8-inch Super Competition headers Engine break-in and initial tuning is being performed on a home-made engine run in stand, complete with a battery, fuel supply and cooling system. Stay tuned for more videos on this engine, as we tune it, in preparation for some Dyno time.





Auto Mechanics: Water Cooled Engines: "Water Boy" 1936 Chevrolet 11min
more at http://auto-parts.quickfound.net/ "A DRAMATIZATION OF THE COOLING SYSTEM OF THE AUTOMOBILE, SHOWING HOW THE WATER CIRCULATES AROUND THE CYLINDERS, COOLING THEM AND IN TURN BEING COOLED BY THE AIR DRAWN IN THROUGH THE RADIATOR." Public domain film from the Library of Congress Prelinger Archive, slightly cropped to remove uneven edges, with the aspect ratio corrected, and mild video noise reduction applied. The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and equalization (the resulting sound, though not perfect, is far less noisy than the original). http://en.wikipedia.org/wiki/Internal_combustion_engine_cooling ...Cars and trucks using direct air cooling (without an intermediate liquid) were built over a long period from the very beginning and ending with a small and generally unrecognized technical change. Before World War II, water-cooled cars and trucks routinely overheated while climbing mountain roads, creating geysers of boiling cooling water. This was considered normal, and at the time, most noted mountain roads had auto repair shops to minister to overheating engines.... ... The subject of boiling engines was addressed, researched, and a solution found. Previous radiators and engine blocks were properly designed and survived durability tests, but used water pumps with a leaky graphite-lubricated "rope" seal (gland) on the pump shaft. The seal was inherited from steam engines, where water loss is accepted, since steam engines already expend large volumes of water. Because the pump seal leaked mainly when the pump was running and the engine was hot, the water loss evaporated inconspicuously, leaving at best a small rusty trace when the engine stopped and cooled, thereby not revealing significant water loss. Automobile radiators (or heat exchangers) have an outlet that feeds cooled water to the engine and the engine has an outlet that feeds heated water to the top of the radiator. Water circulation is aided by a rotary pump that has only a slight effect, having to work over such a wide range of speeds that its impeller has only a minimal effect as a pump. While running, the leaking pump seal drained cooling water to a level where the pump could no longer return water to the top of the radiator, so water circulation ceased and water in the engine boiled. However, since water loss led to overheat and further water loss from boil-over, the original water loss was hidden. After isolating the pump problem, cars and trucks built for the war effort (no civilian cars were built during that time) were equipped with carbon-seal water pumps that did not leak and caused no more geysers. Meanwhile, air cooling advanced in memory of boiling engines... even though boil-over was no longer a common problem. Air-cooled engines became popular throughout Europe. After the war, Volkswagen advertised in the USA as not boiling over, even though new water-cooled cars no longer boiled over, but these cars sold well, and without question. But as air quality awareness rose in the 1960s, and laws governing Exhaust emissions were passed, unleaded gas replaced leaded gas and leaner fuel mixtures became the norm. These reductions in the cooling effects of both the lead and the formerly rich fuel mixture, led to overheating in the air-cooled engines. Valve failures and other engine damage was the result. Volkswagen responded by abandoning their (flat) horizontally opposed air-cooled engines, while Subaru took a different course and chose liquid-cooling for their (flat) engines. Today practically no air-cooled automotive engines are built, air cooling being fraught with manufacturing expense and maintenance problems. Motorcycles had an additional problem in that a water leak presented a greater threat to reliability, their engines having small cooling water volume, so they were loath to change; today most larger motorcycles are water-cooled with many relying on convection circulation with no pump...





Which car is faster? Which Car is Faster?




Similar 1/4 mile timeslips to browse:

2009 Cadillac CTS-V Nitrous: 9.855 @ 139.700
600+ CTS-V, Engine: V8 Supercharged, forged internals, Supercharger: Stock Tires: drag radials


2009 Cadillac CTS-V sedan: 10.120 @ 136.880
Bowtye8, Engine: LSA , Supercharger: 1.9l ported Tires: MT 305 drag radials


2011 Cadillac CTS-V Coupe: 10.201 @ 145.500
Mike Franks, Engine: 6.2L, Supercharger: Yes Tires: PS2 275 on front, M&H 325 on rear


2012 Cadillac CTS-V : 10.240 @ 137.000
Joe, Engine: 416 LSA, Supercharger: Stock unported 1.9 Tires: Front stock, Rear 305 18 inch MT drag radials


2009 Cadillac CTS-V Vette Doctors Nitrous: 10.322 @ 136.720
VD, Tires: Drag Radials


2011 Cadillac CTS-V : 10.431 @ 134.770
V Locity, Engine: 6.2 LSA, Supercharger: 1.9 Ported Tires: MT DRs


2011 Cadillac CTS-V : 10.517 @ 132.350
87GN, Engine: 6.2, Supercharger: stock/ no porting Tires: Nitto NT05


2011 Cadillac CTS-V sedan pullies only E85: 10.586 @ 130.440
87GN Brian, Engine: stock block, Supercharger: stock Tires: NT05 305/35 drag radial


2011 Cadillac CTS-V Ls: 10.610 @ 134.910
Krazyhousecustoms, Engine: Lsa, Tires: Mt


2009 Cadillac CTS-V : 10.708 @ 129.680
John hampton, Supercharger: 1.9 Tires: 305/35/18 MT


2011 Cadillac CTS-V Coupe: 10.725 @ 131.090
Doc GTO, Engine: Factory LSA, Supercharger: Factory TVS 1900 Tires: 315/30-18 Hoosier DRs


2009 Cadillac CTS-V : 10.753 @ 127.850
LitiGATOR, Engine: LSA, Tires: Drag Radials


2009 Cadillac CTS-V : 10.760 @ 129.750
Mike Rhame, Supercharger: pulley change Tires: slicks


2011 Cadillac CTS-V : 10.770 @ 127.600
Buddy, Supercharger: Ported


2012 Cadillac CTS-V Wagon: 10.813 @ 128.590
Don, Engine: 6.2 , Supercharger: 1.9 Eaton Tires: MT DR's 305/35/18


2011 Cadillac CTS-V Coupe: 10.847 @ 128.100
Mike Bambic, Engine: 6.2L, Supercharger: Stock Tires: Mickey Thompson 305/35R19


2009 Cadillac CTS-V : 10.847 @ 130.180
Justin Schmidt, Engine: stock, Supercharger: stock Tires: 295/40/17 MT ET street


2011 Cadillac CTS-V : 10.849 @ 127.900
JOEYCTS-V, Tires: Drag radials


2009 Cadillac CTS-V : 10.874 @ 129.800
gnxs, Engine: Stock, Supercharger: Stock Tires: 305/35/18 MT Drag Radial


2009 Cadillac CTS-V : 10.922 @ 129.790
Big Daddy, Supercharger: Ported Snout Tires: Hoosier Drag Radials


 


©2015 DragTimes - Disclaimer - Contact Us