Drag Racing 1/4 Mile times 0-60 Dyno Fast Cars Muscle Cars

Jamie's Boosted Hyundai Elantra (Oct '11)

This is an old video that I've decided to post practically un-edited. A few parts were skipped regarding off-topic babble in order to keep it under 10 minutes. You've seen this car in another video. There really is no way to determine how many different cars contributed to this build. Every last part on it (except the one featured in this video) was previously used on another vehicle. Absolutely nothing came new in a box. The owner put enough 4g63's together in a lifetime to have extra gaskets and seals laying around to exclusively use junkyard parts to build a whole car. In the last video, you saw me contribute all the turbo parts to this build. Used 150,000 mile old stock DSM turbo parts including a worked 14b. I'm happy to show it to you all put together. Check the other video of this car if you want more details on the engine build. None of the internals have changed.


 


More Videos...


Blueprint 108 - inspect the deck
There's a reason why there are no subtitled specifications in this video for the block. It's because they don't exist in either service manual, 1g or 2g. You're not supposed to remove material from a block on the deck surface because it has ill effects on parts of the combustion chamber geometry, and alters your compression ratio. It can be done intentionally in some cases for a desired side-affect, but if you have to deck a 4g63 head, it would be advised to use a thicker head gasket. The Mitsubishi Multi-Layered-Steel or MLS gasket is slightly thicker than the OEM composite gasket. Also, HKS, Power Enterprise, Cometic, and other performance brands all make MLS gaskets that are .065 and thicker. THERE IS ONE ERROR IN THE VIDEO. I said a block with .002" warpage is junk. I was completely and totally wrong. While I don't wish to spread misinformation, I don't think it's a big enough error to warrant re-editing this video. I just wasn't paying attention. .002" warpage on a cylinder head is the service limit before it needs machining. I meant to say .02"... or two HUNDREDTHS (not thousandths) of an inch. ...and here's my justification... A warped block to me is junk either way even if its minimal because your MLS gasket will never seal unless both the head and the block are perfectly flat. Trust your machine shop to get the values for how much is taken off, and buy the correct thickness gasket for your machine work. A factory head gasket (composite) is .051" The MLS Mitsubishi gasket is available in the stock .051 and a .062" Cometic makes gaskets up to .072" There are some brands that go as high as .127", but I'd have thrown both the block and head away long before then.





Hyundai Assembly 5 - Fighting The Valve Clearance
In previous videos I showed the 2 factors that really need to be scrutinized. Valve clearance and how you degree your camshafts. Of course we got sidetracked with plenty of other tips and tricks but I wanted to upload this video to illustrate that the process really isn't as easy as the animations, demonstrations and explanations make it look. The reasoning is sound, but the work to execute it can be very tedious. Setting up the valvetrain on this engine was very tedious. I say "was" because following this video, we can put that whole topic to bed. This is what it took. Not many people have the patience to deal with this, and I wanted to showcase here for those who are at the peak of their frustration with their builds. This kind of stuff can happen to anyone. Let my pain and suffering help you not feel so all alone. My apologies for the lack of new groundbreaking technical info. It's not a complicated task to install ARP head studs, and that was my plot twist. There are a couple of hurdles you may encounter depending on the production year of your engine, but they're well illustrated in this video. I'm not sure if their installation warrants a video all unto itself, but if you feel it does, speak up because I have 3 more engines to build. I can still do it. I just wanted to demonstrate that progress is being made on this, and despite the long breaks between uploads, a LOT is going on behind the scenes. This was 20 hours of repetitive work and I hope it's at least mildly entertaining. For me, this was the most boring video I've ever edited here because I had to re-live the same steps so many times, over and over again. I could very easily have inserted an hour of it in the wrong place and nobody would ever have known because it all looks the same. The text overlays are there only so you can be aware of what's different. A voiceover would have been pointless because the techniques illustrated are discussed ad-nauseum in the Cylinder Head 205 and 206 videos. The valve cover gasket installation process was covered in "Valve Cover Modification and Polishing", and the discussion about compression ratios is explained in "Calculate Your Compression Ratio". If you like the job the parts washer did, check out my DIY parts washer video. ;) Cylinder Head 205 https://www.youtube.com/watch?v=wbWWCKPuZG4 Cylinder Head 206 https://www.youtube.com/watch?v=4s2X3VUwADA Valve Cover Modification and Polishing https://www.youtube.com/watch?v=NiIi9EljLSk Calculate Your Compression Ratio https://www.youtube.com/watch?v=bWze92nt9OU





Major Huge Announcement
This video is a quick update on the projects here on Jafromobile right now, as well as a tour and history lesson on my latest addition. I'm always hard at work to bring you all new material based on Mitsubishi production and partnerships from 1987-1999. Also covered are what's necessary to resurrect a car that's been sitting for many years. If it's got a 4g63, to me... it's always worth saving. My channel now has 4 Mitsubishi-powered projects in the works which should be capable of delivering tons of new material. I'd like to welcome all of you from the forums. My history with Mitsubishi began in 1997, and hasn't taken a day off since. Owning one of these has been long overdue for me, and you guys have been a wealth of knowledge that helped me along my travels. An asset to the DSM community, even though this isn't a DSM.





Jafro's Hyundai Elantra Surprise
There are some things you can't put a price on. I'm not just talking about the Hyundai. I'm talking about Jamie. I have the best friends in the world. Look what Jamie just did for all of your entertainment. He literally donated it to me to play with on this channel. This isn't just for me. Think about it. It's the only FWD DSM in my driveway, and the only one I'm likely to have. With this combination of parts, I could not have a greater challenge making this car stick. Because right now it doesn't at all. Torque steer ends at about 5700 RPMs in third gear. Boost is instantaneous. This car could never make good use of any larger of a turbo. I'm convinced with the right combo of tricks to gain timing and tweaks to make it stick, and that it will run deep into the 12's just like it is. This car is a kick in the pants to drive. A rolling burnout. Be careful with that downshift.





Cylinder Head 204 - Porting & Polishing
This is a first-generation 1992 1.6L Hyundai Elantra small-combustion-chamber head. Thats what it is. It's a J1 Elantra cylinder head. Good luck finding another one like it. (read more)... In Cylinder Head 106 I talked about the mainstream porting theories as they are discussed. We looked at a cylinder head that I have thousands of dollars of professional work performed on, and a bone-stock second-generation head that I didn't port. In this video I just might do something you haven't seen done before. For some, that may be uncomfortable. The port and polish job I perform here is what I think will work best for my current build. This is not an extreme killer port job. What will be different here is where port textures are concerned, I will be following the advice of a reputable source that will remain un-named. You're free to port yours differently than I do in this video, and I give you that out, around the 20 minute marker. The Hyundai is far from being an ultimate-performance build. It's a $400 box of scraps with nothing but time invested. It's perfect for this video. My finished product WILL be an improvement over what I had. I don't yet have access to a flow bench. I still have an achievement to un-lock. As far as you should be concerned with the techniques I employ... without flow numbers there is no evidence of what this will do, but we will gather lots of info from dynp sessions and drag strip time slips. If I could test it on a flow bench, I would. There are MANY, and when I say many, I mean thousands of flame war mongering pirates floating around on rough seas with a hair trigger cannon finger itching to fire if you port a head any differently than what the herd mentality says to do while porting a cylinder head. I cover the herd mentality because it has merit. It's been tested. Tried and true. But I don't follow it to the letter of the law. I'm definitely not here to de-bunk it. I would port a cylinder head differently for each build based on how that engine was used. There's an extremely valid reason why relating to air speed. It's not the texture of a port that maximizes the effect of fuel atomization, but the velocity of the air running through an x or y sized valve. The driving factor in this is the piston speed. I'm not going to give you the technical information, but will refer you to information about the Lovell factor. There's a better description of this in the links below, and even a calculator to help you find your engine's sweet spot. Why the Lovell factor is important: https://www.highpowermedia.com/blog/3346/the-effect-of-valve-size Lovell gas factor calculator: http://www.rbracing-rsr.com/lovellgascalc.html Only people who have flow testing equipment know for sure what really works and have the capability to produce a perfectly-matched port job for the ultimate performance build. Those guys know the definition of ultimate, and THEY are floating below the water Aegis-class submarines ready to blow your comment up if you don't know what you're talking about. They don't care if you're an armchair mechanic or a herd of pirates. I will say, they're zoomed in pretty close on me right now, and I'm expecting to take a few hits. My work will be tested based on Dyno and drag strip performance, and the results will be posted here. Fortunately, those kinds of videos are a WHOLE LOT EASIER TO MAKE!!!





Calculate Your Compression Ratio
This is everything you need to do to calculate your compression ratio. No foolin'. Every equation and process demonstrated. Find all your variables. Know your exact compression ratio in every cylinder. This is how you do it. Just because your service manual says your car is 7.8:1 or 8.5:1 compression doesn't mean that it is. Whenever there are casting irregularities, variations in piston height, parts that have been machined, non-OE parts, or changes to your head gasket selection, your compression ratio WILL change. It's highly probable that you're only CLOSE to spec if you've never touched your engine at all since it was "born", and that it doesn't MATCH spec. Even if it did, how would you know? This. 5 variables. V1 Swept Volume V2 Deck Volume V3 Piston-to-deck clearance V4 Piston dish cc's V5 Head combustion chamber cc's The ratio math: V1+V2+V3+V4+V5 = volume of combustion chamber at BDC V2+V3+V4+V5 = volume of combustion chamber at TDC The ratio is... (V1+V2+V3+V4+V5) ÷ (V2+V3+V4+V5) : (V2+V3+V4+V5) ÷ (V2+V3+V4+V5) or BDC ÷ TDC : TDC ÷ TDC First you fill in the variables, then you calculate volumes, then you add the volumes, then you reduce the ratio (fraction). It's that easy. Here are your magic numbers: 0.7854 = Pi quartered to the ten thousandth 16.387 = number of cc's in a cubic inch. If you divide any number in cc's by 16.387 it gives you inches. If you multiply any number in cubic inches by 16.387 it gives you cc's. Quartering pi lets you use the calculation: BORE x BORE x STROKE x .7854 = volume of a cylinder instead of... π x (BORE ÷ 2) x (BORE ÷ 2) x STROKE = volume of a cylinder Either way is right. You get the same result if you calculate pi to the ten thousandth. While I apologize for all the math, no I don't. I'm really not sorry. You actually clicked here for it whether you realize it or not. This is ALL the math, the tests, and the whole process to calculate your cylinder volumes and compression individually even if you don't know any of your variables yet. All of my numbers are present for those who want to calculate out the last 3 cylinders out of curiosity just to see how it affects cylinder volumes and compression ratios from one cylinder to the next. Why would I do that for you? Why would I deprive you of that practice? Just assume that all 4 of my combustion chambers are 41.75 ml if you do this. Clicking like share and subscribe helps a channel grow. It also motivates me. Don't sweat the camera. It's enough to know that so many of you care about what I'm doing here. From the bottom of my atmospheric dump, I thank you all! This gift horse's teeth are all over the place, but he sometimes poops gold nuggets. PS: Use ATF for your piston dish volume tests, not alcohol. Of course it's better just to use the spec sheet included with your pistons... but not everyone gets that luxury. Water is just fine for head combustion chamber tests. Dry and re-oil all parts that water touches.





Why so SIRIUS? Kia 4g64?
This video assumes you're aware that various iterations of the 4g series Mitsubishi engines are designated as Sirius I & II. For detailed information about which engines qualify as which, visit: http://en.wikipedia.org/wiki/Mitsubishi_Sirius_engine There's also this at EvolutionM: http://forums.evolutionm.net/evo-engine-turbo-drivetrain/278462-official-hyundai-2-4l-g4js -4g64-thread.html Good luck finding info about this using Hyundai and Kia in searches. Wikipedia doesn't have any info about it grouped with the Sonatas either. There is no question what this is, well illustrated in this video. I apologize for the length of this video, but a lot of ground is covered in a short time. Hopefully there's some information in here you may someday use. I'm just trying to expose it because there doesn't seem to be any real information floating around in the forums about this yet. The car is a first-generation 1999-2005 Kia Optima sedan. It has the EVO equivalent of a 4g64 2.4L. Before using any of these parts, do your research, cross-reference your parts and know what you're getting into. Using parts from this rotating assembly in a 2g Eclipse will require aftermarket rods and/or custom pistons. This is information for those who wish to frankenstein their builds, or save a buck... whichever.... either one of those requires skill.





Trans & Clutch 9 - 2g Shifter Tech
Detailing common failures in 2g DSM shifters, repairing a stock shifter, the B&M Short Shifter, the Symborski Shifter Bushing set, bronze shifter linkage bushings, and fixing sloppiness in all of my shifter's parts. You like how all the part numbers are at the end of the video? Cool! Then click the like button because I work cheap!





Hyundai Assembly 3 - Head Assembly & Specialty Tools
I have bad news. The big camera's playback heads bit the dust from extensive prolonged use. I wore out the tape drive. No manner of cleaning tapes can fix what it's been through. I've talked many times about how much footage goes into one of my 15 to 30 minute videos, and for every hour of video footage I've shot, the camera does double-duty because after shooting, it has to be played back in real time during capture. I've done more than 130 videos this way, probably over 2000 hours of use in the harshest of environments, and it just couldn't handle it any longer. I shot several more tapes beyond what's in this video that I can't even import because the play heads failed. I don't know if any of that video even stuck to the tapes? The lost footage from the last video was an early and un-recognized sign of what was soon to come. I know I joked about it, but in reality it's really not very funny at all. I can't afford a backup for a piece of equipment like this, so it's something I don't have. As bad as this news might feel to you, I feel it 21,000 times over and I mean that. This couldn't come at a worse time and expense for me, and at a point where my production was really starting to wrap up on this project to move on to bigger and better things. It's the only camera I have that can do what I do here on this channel, so I'm forced to stop production for now. Even though my camera is huge, 7 year old HDV technology, these things still sell for several thousand dollars used because they record un-compressed video unlike every other flash storage based solution available at twice the price. 3CCD 1080/60i HD cameras that shoot to tape have advantages that you can't affordably achieve with solid-state media. I have to use un-compressed footage to do what I do here or else there's nothing left of the video quality after 7 exports and a final mpeg compression. The Sony Action Cam can't do it, we learned that in a previous test video. Even if it could, it can't do close-ups and everything's fisheyed. Buying a low-end 4K camera is impractical because I can't efficiently or effectively edit that video without a $9,000 computer. Jafromobile is just not that big of a channel, and I do this completely un-sponsored and at my own expense with the help of a handful of friends who volunteer their talent, time and information. It's the epitome of low-budget and what it earns still doesn't come close covering the channel's equipment and expenses as they occur. People have urged that I do a kickstarter, but I can't bring myself to ask for that from the community. I don't sell a product or offer services so there is no profit margin. I can't accept money for something that happens only at the speed of my available resources. To me, this channel is my proverbial gift horse to all of you. http://en.wiktionary.org/wiki/don't_look_a_gift_horse_in_the_mouth I know what you're thinking and I realize this is a grim conclusion to this video. It sounds like I'm down for the count, but don't rush to the down vote button just yet. As of the upload date of this video, I'm paying out of pocket to fix a ridiculously expensive 3CCD 1080HD broadcast quality video camera so that these projects can resume, and so that I can bring the final assembly steps to you in the same quality you've grown used to seeing here on Jafromobile. If I wear out a camera every 3 years, then so be it. This is love, and no expense is too great. The big camera is being fixed by its manufacturer, and I'm expecting the repair to cost as much as replacing it. I sincerely hope that's not the case. Hopefully my production only has to take a short break. Once production resumes and I can import these tapes, I've got some really awesome stuff coming up and I hope every last one of you is here to see it. I may have a few other backlogged nuggets I can upload, and as always I'm happy to discuss this in the comments and provide updates on the repair as I get them. Update: Awaiting quote due by 5/16 according to the repair agreement. 5/9/2014 9:17:00 AM DELIVERED NEWPORT NEWS, VA US 5/9/2014 5:36:00 AM DESTINATION SCAN NEWPORT NEWS, VA US 5/9/2014 12:04:00 AM ARRIVAL SCAN NEWPORT NEWS, VA US 5/12/2014 - Repair paid in full $440. Far less than I was expecting. I'm glad they still make parts for 7 year old professional equipment. Thank You Canon, USA! Repair should be complete within 7 business days from receipt of payment. The quote only took them 24 hours and they quoted a week just for the estimate, so at this rate I should be back up and running once again very soon. Thank ALL of you for your kind words, HUGE generosity, and all of the moral support. I swear I have the best subscribers on YouTube!





GSX Startup (Nov. '09)
I wanted to deliver a video without my normal beats and fast-forward edits. I wanted to represent this moment for the subscribers, fans and friends exactly the way it happened.





Wheels, Plastidip and Mickeys
What starts as an innocent venture into wheel painting ends in a sticky, sticky episode of badassery. Plastidip is spray-on rubber. This is the first time I've ever worked with it. My review: It comes in colors but my favorite is black. It's good stuff. What I did should have had me spraying it on last... because mounting tires will remove it from a wheel. Most people doing this painted their wheels while tires were mounted. This is what happens when you don't. So what? It's spray-on rubber. Spray on some more and you're good. If you want the BEST results with it (since it can be expensive in some regions), allow no less than 10 minutes between coats, and spray LIGHT COATS. That's capitalized because squeezing out a light coat of spray-on rubber is much easier said than done. It's like lightly-spraying Silly String, or setting your fire extinguisher to "low". Or trying to bathe in a waterfall with good intentions, but getting knocked on your ass by the force of falling water instead. I'm amazed at how easy a product like this is to work with in concept. It sprays differently than paint, but its application is easily mastered once you get the feel for it. I give it... d (ツ) b





Hyundai Assembly 10 - ECMlink Install & Speed Density config
I wasn't paid for or asked to make this video. Whenever someone makes a product that improves one's quality of life and experience... and I buy it, then you see me use that product on my channel because that's just what I do. This video is just intended to be my ten cent tour of how easy it was to install ECMlink and to configure my 92 Hyundai Elantra for Speed Density airflow metering. Really I just followed directions that were on the ECMtuning website, and you should always follow the manufacturer's recommendations over mine. I just wanted to show this one off because... 1) I love ECMlink. 2) I get lots of questions about what software I'm using in my videos. 3) I collect tools. Though some people call this a "mod", to me it doesn't stop there. This is a diagnostic tool. It's a tuning aide. It's a data-logger. It's a power-adder and economy Booster. It's a complete engine management solution that doesn't require cutting or soldering a single wire on your electrical harness to use it. But fourth and most importantly... 4) I've always had a great experience with this product as well as all the awesome people who make it and support it… I'm very grateful to Dave and Tom, especially for attending gatherings, events and Dyno days to give back the community. I'm thankful for all the contributors in the forums who continue sharing their knowledge. If you are interested in getting the hardware and software necessary to support your 90-99 DSM or EVO 1, 2, or 3... these links will help you get started: Website: http://www.ecmtuning.com/ Wiki pages: http://www.ecmtuning.com/wiki/ Demo videos: http://www.ecmtuning.com/demos.php How to buy - click the link that applies to you and READ THOROUGHLY Order page: http://www.ecmtuning.com/index.php?cPath=25 INSTALLING AND CONFIGURING SPEED DENSITY WIKI: * http://www.ecmtuning.com/wiki/sdsetup * Follow these instructions first and foremost. My video only proves it can be done. jjrock5's ECMlink install on a 2nd generation DSM: https://www.youtube.com/watch?v=7Spav_sFXZo My personal testimony: 10 years ago, I won DSMlink v2 in a raffle at the DSMCA GT9 gathering. Tom was there giving away an ECU. Somehow my number was drawn. I won it. It is the holy grail of raffle prizes at a DSM event, and any one of the 10 people who have ever been so lucky will all tell you this. In 2005, I had been using the MAFT system for fuel tuning and I was beyond ready for something new because I wasn't getting the results I wanted. After installing DSMlink, the car's next journey was a DSMCA Dyno Day where once again, Tom was there supporting entrants with their tunes on his product. By the time the 6th pull was over, Tom had dialed in EIGHTY horsepower at red line that I didn't previously have. The car used to peak and fall off, but the power curve peaked and held all the way to red line afterwards. The video doesn't lie, but sadly it was captured with a potato cam. The before/after results were astounding. The one who's vociferously surprised by the before/after in the video - is Tom. While peak power did not increase, there was a 33% gain in power output at 7000 RPMs. Without DSMlink: https://www.youtube.com/watch?v=7dZRjkpX5Lk With DSMlink: https://www.youtube.com/watch?v=38psUwF71mo If you look at the order page and balk at the price, something's wrong with you. If you were to divide the price of ECMlink by the number of features it contains, they would cost only a few cents each. If you compare it to stand-alone solutions, it's an outright bargain. Of course, if you own ECMlink already, then like me... you feel sorry for everyone who doesn't have it unless you're racing against them. Some of the electrical procedures outlined in the factory service manual require special tools which are now antiquated and/or discontinued, or the procedure is rife with complicated processes to do simple tasks (setting the idle speed for instance). You will never see me follow the FSM methods for these tasks in my videos. I am going to grab my laptop, plug in my ECMlink cable and check the box or button that gives me easy and immediate solutions to my problem. I offer no apologies for this. If you're here because I sent you the link when you asked me what software I'm using, I hope you feel I've done my very best to answer your question. For the patient people who watched all the way to the end, that link goes to a video that is not public. That is your reward. Thank you all for your time and attention, and especially, Thank You Tom! Thank you for your contributions to the DSMCA community that built me. Thank you for the raffle. Nothing happens by accident. I won my first ECMtuning product, you gained a life-long customer out of me, and this video is my way of saying "thanks" for all you have done to help our community thrive on race day. This is the mother of all descriptions.





Eagle Talon AWD Turbo Upgrade - Part Two
In this episode, we finish the T3 based PTE 6266 turbo upgrade on my DSM. After getting all of the parts bolted in, we go for a road test to get the initial ECMLink tune nailed down. You can see a complete modification list and many more photos and details at http://talon.turbomirage.com Join me on Facebook at: http://www.facebook.com/tomsturbogarage For more details on my DIY water alcohol injection setup, please visit http://www.turbomirage.com/water Thanks for watching! -Tom Disclaimer The content provided in this video is for informational use only. Video content is provided at the viewers own risk and the viewer will not hold the parties involved in creating, producing or delivering this information liable for any loss, injury, claim, liability, or damage of any kind resulting in any way from any errors in or omissions from the information. Thanks for understanding.





Cylinder Head 205 - Degree DOHC Camshafts
This video is all about establishing your valve timing baseline, and adjusting your camshafts to the manufacturer's spec. It's only ONE of several steps that should be performed when you're assembling your engine on an engine stand. Establishing these conditions with accuracy while your engine installed in the car is a near-impossibility, and the reason why... is demonstrated in this video. There are several challenges to overcome when performing these procedures on a 4gxx series Mitsubishi engine, and they're all defeated here. The cylinder head used in this video is a J1 spec '92 Hyundai Elantra small-combustion chamber head which has had several valve jobs and has been resurfaced multiple times by budget engine remanufacturers who didn't care about quality control, as well as performance shops who do. It has had no less than .040" removed from the head gasket surface, the valves are recessed because of all the valve jobs performed, and at some point when it was cut, it wasn't level. Removing material from the deck surface will change the installed camshaft centerline, and that will change your engine's valve timing events even if all other parts remain the same. I would claim this is a multi-part video except that I've got the videos broken up by topic already, and this one is all about setting your cams to the manufacturer's specification. It is not the end of testing that will be performed with these tools. The basics concerning the process and tool fabrication are covered here. Further discussion on this topic concerning the effects of advancing or retarding camshafts from spec, and for checking your valve clearance will be in the videos that follow. I had to end this video after the manufacturer's spec was achieved to make it easier to digest, and because it would have created a video greater than one hour in length despite the break-neck speeds that things happen here on Jafromobile. Where your cams are set determine how the swept volume of the combustion chamber gets used. The information on the manufacturer's spec sheet is their recommendation for baseline settings that will help you get the most out of those camshafts. Whether or not your engine can operate with those specifications without additional hardware or without causing a catastrophic failure will be expanded upon in Cylinder Head 206. The next video should be used as a companion to this video because establishing the manufacturer's baseline is not the end of the assembly or testing process. It's only half the battle. Should you be lucky enough to find your combination of parts allow your camshafts to fit and requires no additional adjustment after assembly, the steps in this video and in Cylinder Head 206 should still be performed if you are doing the assembly yourself. Failure to inspect these variables may lead to a tuning nightmare once the engine is back in the car, hard starts, or worse... bent valves and damaged wrist pins. Making these tools and performing these steps will give you the peace of mind to know with certainty that your engine is operating safely at its peak performance.





Redline Review: 2014 Hyundai Elantra
Facebook: https://www.facebook.com/2Redline Instagram: http://instagram.com/sofyan_bey Subscribe today for all the latest reviews! A safe and solid pick in the highly competitive compact class, the refreshed 2014 Hyundai Elantra still offers buyers a strong warranty, plentiful features, and a stylish design wrapped in an affordable package. Just be sure you don't require the most technological advanced features or the sportiest driving dynamics.





Which car is faster? Which Car is Faster?




Similar 1/4 mile timeslips to browse:

1994 Hyundai Elantra GT42 Turbo: 12.201 @ 123.030
Rick Inacio, Engine: 4g63, Turbos: GT42 Tires: M/T 26


1992 Hyundai Elantra : 12.960 @ 108.420
Doug Elfman, Engine: 4g63, Supercharger: no Turbos: 14b Tires: mt street slicks


2002 Hyundai Elantra GT: 14.965 @ 96.247
Steve, Engine: 2.0l DOHC, Supercharger: na Turbos: na Tires: hankook


2003 Hyundai Elantra GLS: 15.510 @ 89.640
FordFasteRR, Engine: 2.0L Twin Cam, Tires: Yokohama AVS ES-100


2014 Hyundai Elantra GT: 16.410 @ 84.510
MT, Engine: Front Engine, FWD I-4, aluminum block/head,


2011 Hyundai Elantra Limited: 16.910 @ 84.110
ET, Engine: Dohc 16v - valve inline 4: 148 horsepower, Tires: Continental ContiProContact 215/45R-17 87H


1999 Hyundai Elantra GL: 17.343 @ 80.920
Paul,


 


©2015 DragTimes - Disclaimer - Contact Us