Drag Racing 1/4 Mile times 0-60 Dyno Fast Cars Muscle Cars

Blueprint 102 - Measuring 4g63 Crankshaft Endplay

4g63's are famous for hosing crankshaft thrust bearings. This video illustrates the process of how to check the thrust bearing clearance whether the motor's in the car or not. Of course in my case the motor's on a stand for this video. Lucky for me! In cases where the engine is still in the car, the same procedures can be used so long as the indicator is attached to the engine block. The plunger can be set up touching either the inside of the crank pulley or by removing the clutch cover plate and contacting the flywheel. What the thrust bearing does, is prevent the crankshaft from having lateral movement in the main bearings. If a crankshaft develops excessive movement here, clutch engagement and hydraulic problems will begin showing up, followed shortly thereafter by catastrophic failure of main bearings, rod bearings, connecting rod failures, oil pressure problems, or even broken blocks, crankshafts and rods in extreme cases. It's important that every 4g63 turbo engine is within spec on this measurement. When the crankshaft aggressively wears through the thrust bearing developing lateral play, this is called "crankwalk". On some block castings, replacing the bearings will NOT fix the problem. An engine block that is prone to crankwalking can not be fixed. The only option in these cases is to replace the shortblock and rotating assembly with new or used parts that are stronger than the one you've unfortunately encountered. For the 2g guys, the best option for repairing this problem is to remove the 7-bolt turbo shortblock your car came with and replace it with a 6-bolt from a 89-92.5 production date turbo DSM. Non-turbo blocks CAN be used; however, the block will not have oil squirters that aim towards the back of the pistons. That stream of oil aides lubrication to the wrist pins, cylinder bores, and somewhat cools the pistons. All good things on a turbo setup. Aside from that difference, there are no other differences between the non-turbo and turbo blocks. The pistons and thus the compression ratios are different, but that's it. Oil squirters can be machined into the main galleries of a non-turbo block, but it's more trouble than it's worth unless you can't find a turbo block. There are tons of differing theories about what causes crankwalk. Nearly all of them are plausible and logical arguments. I will not get into those debates in this video in order to focus on procedures for testing and replacement. Please feel free to google "crankwalk 4g63" and read the volumes of information available already. The arguments and gathered data are older than the Eclipse itself and in abundant supply on the internets. Magnus, RRE, VFAQ, and many other parts vendors have lengthy write-ups on their own research and development. The bottom line is that the 6-bolt shortblocks are LESS likely to suffer from this. Next time you see someone with a video that looks like it was shot with a potato asking "does this sound like crankwalk", you can send them this video. There's a reason for every noise, rather than focus on the sound, focus on eliminating the real problem. KNOW if it's out of spec.


 


More Videos...


Blueprint 103 - Connecting Rods
Connecting rods are the crux of the engine. They're responsible for carrying the force of the explosions that occur in the combustion chamber and using it to turn the crankshaft. Oil clearance specifications of the "big end" and "small end" are crucial to maintaining consistent oil pressure. In this video we take 3 measurements: Rod Gap Rod Journal (also called Crank Pin) Diameters "Big End" Bore diameter Using the Journal diameters and the "Big End" Bores, you can calculate your oil clearances of each bearing. The process is illustrated here. Anyone rebuilding an engine who doesn't know its history should check all of these clearances whether or not they're re-using the rods. If the crank, bearings or connecting rods are going to be replaced, it's imperative that you measure the new parts as well to ensure they're in spec.





Blueprint 106 - Cylinder Bore Inspection
We're close to the end of the 100-level series. In this video I show you how to measure the cylinder bores using 2 different tools. I compare the results and illustrate what to look for to determine whether or not your engine is in-spec. The block I'm using is a 6-bolt turbo 4g63 from early '92. It has 150,000 miles and this video also serves as a testimony for the durability of Mitsubishi's cast-iron solid-decked Sirius I engines. This engine will be cut for a new set of pistons, so these measurements are needed to determine what size pistons I need to get. .030" is as far overbored as you should ever take a 4g63. Boring larger than that will take too much off the side clearances between the cylinder walls and result in compromised strength from hot spots. The only time you'll ever need to cut a bigger hole is when an imperfection prevents you from using the pistons you have, or if you're changing to a larger piston. If you cut the block to its service limit, you have no room to fix an imperfection should one develop... so it's best to cut as little as you can get away with. Boring a cylinder .020" over does not significantly increase its displacement.





Blueprint 104 - The Crankshaft
It's important to know what you've got even before dealing with the machinist. If you want to inspect a crankshaft, this is how you do it. I detail the process of removing the crank and what to measure. All specifications in this video are illustrated with a 6-bolt 4g63 turbo block, but are all actually the same for 7-bolt engines with the exception of the rod widths.





Checking Crankshaft thrust (endplay).MP4
How to check crankshaft thrust or endplay while assembling an engine.





Cylinder Head 205 - Degree DOHC Camshafts
This video is all about establishing your valve timing baseline, and adjusting your camshafts to the manufacturer's spec. It's only ONE of several steps that should be performed when you're assembling your engine on an engine stand. Establishing these conditions with accuracy while your engine installed in the car is a near-impossibility, and the reason why... is demonstrated in this video. There are several challenges to overcome when performing these procedures on a 4gxx series Mitsubishi engine, and they're all defeated here. The cylinder head used in this video is a J1 spec '92 Hyundai Elantra small-combustion chamber head which has had several valve jobs and has been resurfaced multiple times by budget engine remanufacturers who didn't care about quality control, as well as performance shops who do. It has had no less than .040" removed from the head gasket surface, the valves are recessed because of all the valve jobs performed, and at some point when it was cut, it wasn't level. Removing material from the deck surface will change the installed camshaft centerline, and that will change your engine's valve timing events even if all other parts remain the same. I would claim this is a multi-part video except that I've got the videos broken up by topic already, and this one is all about setting your cams to the manufacturer's specification. It is not the end of testing that will be performed with these tools. The basics concerning the process and tool fabrication are covered here. Further discussion on this topic concerning the effects of advancing or retarding camshafts from spec, and for checking your valve clearance will be in the videos that follow. I had to end this video after the manufacturer's spec was achieved to make it easier to digest, and because it would have created a video greater than one hour in length despite the break-neck speeds that things happen here on Jafromobile. Where your cams are set determine how the swept volume of the combustion chamber gets used. The information on the manufacturer's spec sheet is their recommendation for baseline settings that will help you get the most out of those camshafts. Whether or not your engine can operate with those specifications without additional hardware or without causing a catastrophic failure will be expanded upon in Cylinder Head 206. The next video should be used as a companion to this video because establishing the manufacturer's baseline is not the end of the assembly or testing process. It's only half the battle. Should you be lucky enough to find your combination of parts allow your camshafts to fit and requires no additional adjustment after assembly, the steps in this video and in Cylinder Head 206 should still be performed if you are doing the assembly yourself. Failure to inspect these variables may lead to a tuning nightmare once the engine is back in the car, hard starts, or worse... bent valves and damaged wrist pins. Making these tools and performing these steps will give you the peace of mind to know with certainty that your engine is operating safely at its peak performance.





Cylinder Head 106 - Casting & Porting Tech
Description. No really guys, what can I type here? I just went on for 18 minutes without shutting up. I apologize for deviating from my normal format, but we're almost there... ...when I port a head, there will be no voiceover, and it will be a 200-series video.





How to polish a crank ( crankshaft )
Engine-Guru.com Presents a video on how to polish your crank shaft. Any questions call 616-430-3114 ask for KYLE. We are located out of Grand Rapids, Michigan.





Reading a Standard Micrometer.mp4
This video continues the series on using precision measuring tools that are used by the mechanic. The detailed video uses closeup video to show hoe standard micrometers are used.





Trans & Clutch 4 - Installing The Clutch
What you wanted to know about clutches but were afraid to ask. I'm putting a ACT MB1-XTSS on the car in this video. Step height, clutch dowell pins, bolt part numbers, alignment and various clutch parts are described in this video. It's part of an all-inclusive drivetrain tech piece I'm working on that's broken up into sections to maintain focus on the individual processes involved.





Hyundai Assembly 6 - Manifolds & Turbo
I love music videos. They're so much easier to narrate. I don't want to upset anyone by not providing commentary about what I'm doing or where this build is going... and this is the video where all that stuff comes together. Quite frankly, I missed you. I really enjoy these little talks we share. In this video is a little fabrication, maintenance, comparison and assembly. Un-boxings, cleanup, break-fix... Variety! You know... The stuff that keeps happening as you wrap up any build. It's not a longblock until it has manifolds, and a turbo build has a few more things than just that in order to make it complete. My attention has now turned towards preparing the chassis and accessories for installation and I promise there will be more involved videos following this one for the hardcore auto techs. Whether you're watching or wrenching on this one, all this stage does is create anxiety for wanting to hurry up and finish the install, but don't rush. Do it right! These are the non-reusable parts for the turbo install. ALL of the other part numbers in the video were shown: MF241255 x2 Oil Drain Bolts (upper) MF101229 x2 Oil Drain Bolts (lower) MF660031 x2 Oil Drain Gasket (washer) MR258477 x2 Oil Drain Gasket (flange) MF660064 x2 Oil Feed Crush Washer (turbo) MF660063 x2 Oil Feed Crush Washer (head) MF660065 x4 Coolant Crush Washer (turbo) MD132656 x4 turbo Bolt (M10 x 80 x 1.25mm) MD132933 x8 turbo Spring Washers Thank you all for keeping up with this build. Thanks especially for the kind comments and interest in this project! You guys are the best!





6-bolt 4g63 Kiggly Main Girdle Install
Ballos Precision Machine was nice enough to let me into their operations and film the installation of my 6-bolt Kiggly Main Girdle. They let me do this as a gift to all of you. THIS IS NOT THE FINAL INSTALLATION. Though all the parts were cleaned prior to pickup, they will be extensively cleaned again, and the fasteners installed finger-tight with red Loctite exactly 15mm above the surface of the main girdle and torqued in the proper torque sequence. My main caps were level and straight, the crank bore was straight to begin with, and had never been line bored following the original assembly at the factory.





Hyundai Assembly 5 - Fighting The Valve Clearance
In previous videos I showed the 2 factors that really need to be scrutinized. Valve clearance and how you degree your camshafts. Of course we got sidetracked with plenty of other tips and tricks but I wanted to upload this video to illustrate that the process really isn't as easy as the animations, demonstrations and explanations make it look. The reasoning is sound, but the work to execute it can be very tedious. Setting up the valvetrain on this engine was very tedious. I say "was" because following this video, we can put that whole topic to bed. This is what it took. Not many people have the patience to deal with this, and I wanted to showcase here for those who are at the peak of their frustration with their builds. This kind of stuff can happen to anyone. Let my pain and suffering help you not feel so all alone. My apologies for the lack of new groundbreaking technical info. It's not a complicated task to install ARP head studs, and that was my plot twist. There are a couple of hurdles you may encounter depending on the production year of your engine, but they're well illustrated in this video. I'm not sure if their installation warrants a video all unto itself, but if you feel it does, speak up because I have 3 more engines to build. I can still do it. I just wanted to demonstrate that progress is being made on this, and despite the long breaks between uploads, a LOT is going on behind the scenes. This was 20 hours of repetitive work and I hope it's at least mildly entertaining. For me, this was the most boring video I've ever edited here because I had to re-live the same steps so many times, over and over again. I could very easily have inserted an hour of it in the wrong place and nobody would ever have known because it all looks the same. The text overlays are there only so you can be aware of what's different. A voiceover would have been pointless because the techniques illustrated are discussed ad-nauseum in the Cylinder Head 205 and 206 videos. The valve cover gasket installation process was covered in "Valve Cover Modification and Polishing", and the discussion about compression ratios is explained in "Calculate Your Compression Ratio". If you like the job the parts washer did, check out my DIY parts washer video. ;) Cylinder Head 205 https://www.youtube.com/watch?v=wbWWCKPuZG4 Cylinder Head 206 https://www.youtube.com/watch?v=4s2X3VUwADA Valve Cover Modification and Polishing https://www.youtube.com/watch?v=NiIi9EljLSk Calculate Your Compression Ratio https://www.youtube.com/watch?v=bWze92nt9OU





Rebuild Engines with Blueprinting - Part 1 of 2
Mike Kerley of Active Engines Rebuilding describes the process of engine blue printing and the impact blue printing has on engine performance. This is the first of a 2-part video series. For more information: www.activeengines.com





502 Crankshaft Balancing.wmv
See how John at Costa Mesa R&D Automotive Machine balances a big block Chevrolet 502 crankshaft. www.engine-machining.com (949) 631-6376





Crankshaft Refurbishing
Many of you have seen this one before. I apologize if bringing it back offends anyone. Domestickilla gave me a crankshaft, and it's a nice one that I want to clean up and use again. You'll be seeing a lot of it and because of this, this video deserves to be here. I fixed what I broke, and this was my experience. In this video Ballos Precision Machine demonstrates magnetic dye penetrant testing, crankshaft polishing and inspecting the balance of a "butchered" 4g63 6-bolt crankshaft.





Which car is faster? Which Car is Faster?




Similar 1/4 mile timeslips to browse:

2006 Harley-Davidson VRXSE : 9.388 @ 140.120
brian macalister, Engine: 1300 cc, Supercharger: none Turbos: none Tires: dunlop


2005 KTM 525 EXC: 12.810 @ 104.960
Sanga, Engine: 510cc stock motor, Supercharger: NO Turbos: NO Tires: Road tires


1981 Alfa Romeo GTV-6 3.2 V6 24V: 13.173 @ 103.490
fastcar, Engine: 3.2 V6 24V, Tires: Toyo R888 225/45 R16


1981 Alfa Romeo GTV-6 3.2 24V: 13.404 @ 104.530
fastcar, Engine: 3.2 V6 24V from 147GTA,


1981 Alfa Romeo GTV-6 3.2 V6: 13.577 @ 105.140
fastcar, Engine: 3.2 V6 24V GTA, Tires: Yokohama Advan A038


2011 Infiniti M37 S: 13.728 @ 101.540
Da Mayor,


1981 Alfa Romeo GTV-6 3.2 24V: 13.789 @ 101.050
fastcar, Engine: 3.2 V6 24V,


1981 Alfa Romeo GTV-6 3.2 24V: 13.914 @ 99.110
fastcar, Engine: 3.2 V6 24V from 147GTA, Tires: Yokohama A520 205/45R16, 225/45R16


2011 Infiniti M37 : 14.110 @ 101.020
NA, Engine: V6: 330HP,


2005 Nissan Murano SL AWD: 15.642 @ 90.020
DeLeon, Engine: 3.5 Liter, Tires: Stock


2006 Nissan Murano SL AWD: 15.790 @ 95.100
Big Vince, Engine: 3.5 V6, Supercharger: none Turbos: none


2007 Nissan Murano SE AWD: 16.010 @ 87.010
NA,


 


©2014 DragTimes - Disclaimer - Contact Us