Drag Racing 1/4 Mile times 0-60 Dyno Fast Cars Muscle Cars

Jamie's 92 Hyundai Elantra with bastard 4g63 swap

There's a history both behind this car, and the friendship with this person. I met him 10 years ago following a random conversation that I injected myself into between 2 strangers at an auto parts store. I had just bought a '92 Civic CX with crap compression and was picking up some service parts to keep it limping and useful while I built my DSM. I overheard him mention "4g63" to somebody as I walked by, so I turned around and introduced myself without any clue that he was one of the "realest" people I've ever known. What occurred for me in the following discussion was an awakening on my part. He led me to an adjacent parking lot where an un-assuming Hyundai Elantra sat. This isn't the one, but is one of many factory cars that he's swapped a 4g63 into. What he managed to get through my big thick skull was there were lots of great inconspicuous chassis that you can simply bolt a 4g63 into. Over time it became evident where you can find lots of "racing" parts, from factory equipment on various mini-vans, station wagons, much of the Hyundai line-up from '92-'95. During the "DSM Years", there were plenty of cars from other manufacturers that made dynamite donors, and this sparked my ability to be frugal in some of my ventures. If you ever meet Jamie, expect his knowledge of car parts both inside and outside the realm of Mitsubishi to be as unassuming on the surface as the car in this video. He has true talent. Finds peace and happiness in a junkyard full of decay, and skills that create useful high-performance art from what many consider rubbish. Because he's already taken time walking around with parts from one car and bolting them on to others to see if they'll fit, worked as a machinist's apprentice rebuilding everything under the sun, and done the tech work to analyze failures in all of it, he's often my go-to guy for advice when things aren't working correctly. Many times he's come through for me in a pinch and shed light on something I didn't understand. That goes both for examples in the automotive domain, and in real life when I've hit hard times. Many of my parts for the Colt came from his past builds on various Mitsubishis and Hyundais. In fact... many of my Colt parts have come from this very car. He gave this chassis to somebody, and they returned it later because life didn't let them finish it. I don't think it took even a month once he put his mind to working on it to get it in this state, and it was motorless-and-in-pieces. I can't wait to see these parts get bolted on this car. I think we'll have a new textbook definition of sleeper when he's done.


 


More Videos...


More ebay 20g drag passes
Trolled by mother nature. I thought plugging in my o2 sensor might make a difference. Scarily that's not how things worked out. My fuel trims are all jacked up with or without it. Airflow counts are down. I have more to do to this thing, but in an effort to keep things real, I'm uploading what happened and what I found in the logs. The PRIMARY reason for racing is development of both self and your equipment. If your goal is to have an awesome street car, you can't fully-achieve that goal without rigorous testing where numbers and facts are clearly evident. You JUST CAN'T do that on the STREET. There are no numbers on the street, no measurement of a baseline nor any improvements you might make. There's no measurement of a drivers' skill outside of, "did you win or didn't you?" I didn't come to the track with the expectation of MY driving needing to be improved. I was simply getting numbers, so I wasn't a tree-nazi like I was in the Friday Night No-Lift-To-Shift video. There was more incentive for me to just not red-light and see what she'll do. This evening I didn't feel like the track crew were on their A-game. Sometimes they held staged cars for an inordinately long period of time... which once I'm staged, I'm on the rev limiter, and once they left me there awaiting the tree for over 20 seconds, heating my car up and leaving me disadvantaged out of the hole. Other times they treated the starting lanes, dried off my opponent's side but not mine, not giving instruction to hold or wait. In fact, one guy was signaling me forward while another crew member was standing in front of my car spraying the lane. What do you expect for only $15? I'm grateful for them, but the communication could stand improvement over what I saw tonight. Perhaps I'm just a bit miffed with my setup and looking for someone else to blame? The track officials certainly don't deserve any for how it ran this night.





New Year's Eve Hyundai Teardown
It goes like this. One of the best friends I've ever had built this car from junk parts. He said it best, "it was built from literally a box of scraps". It ran an 13.2 in the quarter mile using no aftermarket performance parts of any kind. That quarter mile time was limited by traction. I know this car had more in it, but I never managed to get it to stick before encountering this. More on this build... The proper bolts were not always available, but the builder knows isht from Shinola. Even though this engine defies all engineering logic from Mitsubishi, the builder knew what would work and what would not. Budget was of the most primary of his concerns, and it shows at every turn, and it's what brought us to the kind of failure we find in this video. I asked him what bearings he used. He said, "...the least expensive ones I could find. Picture Aluglides. Now picture generic Aluglides. I paid half-as-much for those bearings as I would for generic Aluglides. Bolt too long? Put a nut on it and shorten it. Oil pan too close to the pickup? Hammer a big dent in it to make clearance for it. Wrong water pipe? Put a brass hardware store tee in the line to tap a turbo coolant feed. Forget buying ARP's, this is an all-standard re-used factory fastenere'd no-oil-squirter .030"-overbore 6-bolt with the cut-off balance shaft mod. It's using a small combustion chamber head off of a 1.6L Mirage with a 2.0L non-turbo block. The plug wires are used. The radiator hoses were used. Everything but the head gasket came from a junk car. The FWD turbo gearbox is from my 150,000 mile old Plymouth Laser that donated the block to the Colt. This is one of the most amusing cars I've ever wrapped my fingers around because of these kinds of character-building attributes. Nevermind that the chassis has less than 70,000 miles on it (not bad for a '92), it's just that it's built without using any new parts. Parts were substituted when they were not available, and it's ridiculously powerful. Thank you Jamie. You discovered your answer. I'm happy to help. I'll be changing some things like the oil pan bolts, bearing quality, some of the plumbing and fixing a few wiring harness problems, but I'm not changing anything else if I can avoid it. This car was never intended to have anything upgraded to deliver raw power, and I'll do my best to keep it that way, replacing and restoring what failed so that we can keep pushing these generic non-turbo .030" over pistons to the limit. Apparently, 24 PSI from a 14b is not enough. In the meantime, my diagnosis is that excessive oil pressure lead to the breakdown of the #1 bearing. After all, it's the 1st bearing in-line in the oil system on the main gallery. It's the most isolated from clutch harmonics, yet it was the one that spun. The #1 bearing supplies the oil pump. The teardrop on the head is nearly gone from head resurfacing, and this is a no-balance-shaft no-oil-squirter block. I think high oil pressure is why it falls on its face above 6000 rpms. There's a restriction upstream from the lifters and they deflate at high RPMs, losing lift. I'll fix it. I've got the parts.





Hyundai Elantra 4g63 Shortblock Assembly
HOLD ON TIGHT! HERE WE GO! We begin the blueprint and assembly on my 1992 Hyundai Elantra's bastardized 4g63. The parts used in this are from a mash of different brands and models outside of the typical 2.0L 4g63, but the specs and standards I am following for its assembly are for the 2.0L DOHC. If you want to follow along in your service manual to verify what I've done here in this video, the processes we cover here detail pages 11C-95 through 11C-105 of the 1g Overhaul manual. I would prefer you not rip them from the binding and throw them away, relying only on this video for instruction... but rather use this video as a motivational guide, and as a demonstration of the techniques involved in those sections. You gotta do the cooking by the book. I never had any intention of making instructional videos on this particular car, but after it blew up I slowly realized it's actually a better case study for how a 4g63 ticks than anything else in my driveway. There are several reasons for this. One being that it's a mix of parts that shouldn't be bolted together, and the other is that many of you watching my videos aren't trying to build a 600hp engine out of aftermarket parts. You're trying to put back together what used to be your daily driver. This car covers those bases. Don't think for a second I won't go through this same trouble and level of detail for the GSX. I will. When I do, having this information in this video will give you a better understanding on how and why I do things the way I do when I get there. This was the shortest I could condense this video. I've never uploaded a video this long, and I hope I never have to do it again. It took a month to create on cutting-edge equipment, 16 hours to export, and 9 hours for YouTube to process. My script for the voiceover is 6 times longer than the whole script for the movie Pootie Tang. 6 times. Longer. Than a Hollywood movie.





4G63t Swapped Hyundai Excel
4G63t Swapped Hyundai Excel.... Vtec this... 2100lb full interior... Engine Specs: Maybe Later....





Out with the old, in with the new.
I bet you were expecting a different car. Sorry. I didn't want to, nor did I ask to troll you with this video. It's just what it is. I set out to burn some rubber, drop some bass, and have some fun in the Hyundai... and this is what happened. Testing in this video... aside from the opening scene, I shot this video at 1080p30 using an head-mounted Sony HDR-AS30V Action Cam. The camera was contained in the incuded waterproof case because I needed to test the audio with it. It sounds great with out it. It sounds only good with it. This is a test to see how I can adjust my shooting style to add 1st-person perspective to my videos for everyone's benefit. The follow-up video will be shot entirely with the "big camera" (Canon XH-A1s)





Friday Night "Street" challenge.
Racing trailer queens at Richmond Dragway's so-called "street" event again. Making a few passes with the Hyundai Elantra to illustrate a point. Someone asked about timeslips recently and I wanted to show one of the types of information you can gain from examining what's on it. Information about yourself, and your car. How well you're driving it, and how well your equipment is working for you. I built it up with the current video explaining the 60' time measurement while installing compound tires. I figured that timing was appropriate since tires have everything to do with traction and acceleration. The 60' is all about maximizing acceleration over the 1st 60 feet of the track. The results of running different 60' times show up differently at the end of the track. A FWD, RWD and AWD car will exhibit different characteristics based on contact patches, weight distribution and rotating mass associated with each setup. But FWD is by far the most challenging to deal with getting up out of the hole. Mastering the launch with your car means more at the track than making all the horsepower in the world at once. Getting it down takes practice. Here's a quick guide for how to set your expectations. So if drag racing is your thing... always be convinced you could do it better, and never stop trying to get there.





The Zero F**ks Given RX7 - /TUNED
Would you drive a car built by a teenager in his parents driveway with no safety features whatsoever? We did, and now we'll tell you why this ugly RX7 is so brilliant.





Jafro's Hyundai Elantra Surprise
There are some things you can't put a price on. I'm not just talking about the Hyundai. I'm talking about Jamie. I have the best friends in the world. Look what Jamie just did for all of your entertainment. He literally donated it to me to play with on this channel. This isn't just for me. Think about it. It's the only FWD DSM in my driveway, and the only one I'm likely to have. With this combination of parts, I could not have a greater challenge making this car stick. Because right now it doesn't at all. Torque steer ends at about 5700 RPMs in third gear. Boost is instantaneous. This car could never make good use of any larger of a turbo. I'm convinced with the right combo of tricks to gain timing and tweaks to make it stick, and that it will run deep into the 12's just like it is. This car is a kick in the pants to drive. A rolling burnout. Be careful with that downshift.





First ebay 20g drag passes
I made 2 passes. On the first one, nearly everything that could go wrong did. But I'm a persistent bastard. I fixed it all, found everybody and then made this run. It wasn't until after I got home that I realized I had no in-car video footage of the first run when I broke despite having set it up... I kicked the alternator belt off no-lift-to-shifting into 4th gear around 800 feet and coasted to a 13.3 at 82mph against a 10 second Mustang. Overheating with no power steering I limped it back and put the belt back on, only burning myself 9 times, and then got back out and made this run. The guys in front of us broke, too. I guess it was contagious?

This run is on 93 octane pump gas.

I shouldn't have been in such a hurry. It left me a little unprepared. You learn things about other things while doing things--is the best I can explain it. It didn't knock at all, so clearly the new injectors are working fine... but I didn't take time to burp the coolant system, so it ran hot. My alternator belt was loose, and it bailed on me. I was focusing on explaining the video (I deleted that scene from frustration) rather than putting the car back together, and failed to plug in a very important sensor. I would have caught it, but didn't get a chance to look at the logs until I got home. I have to operate so many pieces of equipment in addition to actually driving that it's very distracting.

The guy in my second race had a beautiful 1967 Dodge Dart, and he was a very good sport! It was a great race where adrenaline is involved, and I was focused but wary of whether or not the alternator belt would stay on. I really appreciate the guys that keep old muscle alive. That car's almost 50 years old. That's making history right there... He cut a great 60 foot after they cleaned up the track, but I wish that car didn't break in his lane prior to his pass if it was a problem for his run.

I tried to leave nothing out and keep it short & sweet. I was lucky to have a track-side cameraman for the second race. Thanks Taylor! Having that sensor plugged in would have left me much more confident in the log data and offer a much better assessment of this turbo, but it is what it is. Here it is...





Grinding Oil Return Channels
I started cleaning the rust out, and got carried away. I didn't want to do as extensive of a cleanup job as I did on the GSX, but still wanted to make improvements because of the kinds of oil-related problems it experienced. There's a method to this madness. It will make more sense once I get around to bolting the oil pan back on. The techniques in this video are things I had to do right now if I was going to do them at all. Some of them really needed to be done anyway. You really don't see people do these tricks on imports. Just because you don't see it, it doesn't mean it can't help. I hope you enjoyed the motor oil drag races in the middle of the video. They speak for the science behind this mod... without having to get all scientific. Those results speak clearly for themselves, and there's plenty of chances to get scientific as the Glyptal treatment of the GSX is completed. In this video... I used steel wire cup brushes for both an air DIY grinder, and a Dremel to remove the rust. I used a cone-shaped carbide double-cut burr to smooth the crankcase. I polished the crankcase with coarse and medium sanding rolls for both an air DIY grinder and a Dremel. I used a 1/4" ball carbide double-cut burr to grind the channel. I used a pack of Harbor Freight #95947 10-Piece Tube Brush Kit. http://www.harborfreight.com/10-piece-tube-brush-kit-95947.html





1993 HYUNDAI ELANTRA AD KOREA 3
ELANTRA KOREA





4G63 Dragster - First Track Day
Atco Raceway - 4/18/09 First day at the track with our 4G63 Dragster project. The converter is too tight to build Boost on the line at the moment but we're working on it!





BIG BAD WOLF - 4G63 Swapped BMW nearly blows the house down!
Doing a little early morning tuning at the 2012 DSM Shootout. Matt Arruda's 9 second 4g63 Swapped E30 BMW Infamous Performance New England DSM Norwalk, OH. 20th Annual DSM Shootout August 17th-19th, 2012.





4g63 Turbo Manifold Swap #1
This is one of the problems I found after the Thursday night test & tune. Over the next 2 days, I kept watching my airflow counts dropping gradually in my logs and knew what was going down. Then I decided to drive it to work and it sounded like somebody was running next to me with a lawnmower... further confirming that I knew what was going on. Yep. Pre-turbo Exhaust leak. It still had balls when I mashed the gas, but I could tell it wasn't right. I was surprised because when I found the crack, I realized I shouldn't have even been able to spool the turbo. This manifold flows better than the stock piece, sure... but unless you get one made of inconel, it's a raging pile of crap. Get rid of it. 304 stainless doesn't cut it. I even had the lower turbo/Exhaust brace in place, so it wasn't getting wrenched on accelerating and decelerating. This thing just wore out & broke off from heat and pressure, and it did it in less than 2000 miles. Yes, it's the one in the polishing video. Other things that are a good idea to do... 1) always use factory turbo bolts and washers. You're supposed to replace them with NEW bolts and washers. Use FACTORY TORQUE SPECS! 21-23lbs + 60-70° 2) Stainless Steel 3mm turbo gaskets are re-usable. Worth the investment. 3) Use Stainless Steel ARP head studs. They don't break off like OEM ones do. This job sucks when you snap off factory studs. Use FACTORY TORQUE SPECS! 19-21 lbs (even on ARP hardware) for the M8 nuts. 21-23 lbs on the outer two M10 nuts if you have a 2g. 4) if you have to replace one, just get the EVO manifold. It dwarfs both the 1g and 2g. The turbo flange is bigger, so put my turbo port & polish video to use. It doesn't need to be ported like the 2g part does, and it's a thicker cast making it last much longer. If you have the cash, go ahead and buy the Forced Performance cast manifold. You won't regret it. 5) The only people that will know why this video is called Manifold Swap #1 are the people who read the info. I have a brand new FP manifold that's being ceramic coated, and I had bought it prior to this failure, not anticipating that it would happen. Lucky me. I hated where the tubular bits ended up in my engine bay, and they're preventing me from re-installing my polished valve cover. The only reason I put that thing on my car was because the 2g stock manifold was ugly. Ugly, sure... but it works just as good and more reliably than these tubular things. If you buy a manifold, buy a CAST manifold.





6-bolt 4g63 Kiggly Main Girdle Install
Ballos Precision Machine was nice enough to let me into their operations and film the installation of my 6-bolt Kiggly Main Girdle. They let me do this as a gift to all of you. THIS IS NOT THE FINAL INSTALLATION. Though all the parts were cleaned prior to pickup, they will be extensively cleaned again, and the fasteners installed finger-tight with red Loctite exactly 15mm above the surface of the main girdle and torqued in the proper torque sequence. My main caps were level and straight, the crank bore was straight to begin with, and had never been line bored following the original assembly at the factory.




Which car is faster? Which Car is Faster?





Similar 1/4 mile timeslips to browse:

1994 Hyundai Elantra GT42 Turbo: 12.201 @ 123.030
Rick Inacio, Engine: 4g63, Turbos: GT42 Tires: M/T 26


1992 Hyundai Elantra : 12.960 @ 108.420
Doug Elfman, Engine: 4g63, Supercharger: no Turbos: 14b Tires: mt street slicks


2003 Hyundai Elantra GLS: 15.510 @ 89.640
FordFasteRR, Engine: 2.0L Twin Cam, Tires: Yokohama AVS ES-100


2011 Hyundai Elantra Limited: 16.910 @ 84.110
ET, Engine: Dohc 16v - valve inline 4: 148 horsepower, Tires: Continental ContiProContact 215/45R-17 87H


1999 Hyundai Elantra GL: 17.343 @ 80.920
Paul,


 


©2014 DragTimes - Disclaimer