Drag Racing 1/4 Mile times 0-60 Dyno Fast Cars Muscle Cars

Jamie's 92 Hyundai Elantra with bastard 4g63 swap

There's a history both behind this car, and the friendship with this person. I met him 10 years ago following a random conversation that I injected myself into between 2 strangers at an auto parts store. I had just bought a '92 Civic CX with crap compression and was picking up some service parts to keep it limping and useful while I built my DSM. I overheard him mention "4g63" to somebody as I walked by, so I turned around and introduced myself without any clue that he was one of the "realest" people I've ever known. What occurred for me in the following discussion was an awakening on my part. He led me to an adjacent parking lot where an un-assuming Hyundai Elantra sat. This isn't the one, but is one of many factory cars that he's swapped a 4g63 into. What he managed to get through my big thick skull was there were lots of great inconspicuous chassis that you can simply bolt a 4g63 into. Over time it became evident where you can find lots of "racing" parts, from factory equipment on various mini-vans, station wagons, much of the Hyundai line-up from '92-'95. During the "DSM Years", there were plenty of cars from other manufacturers that made dynamite donors, and this sparked my ability to be frugal in some of my ventures. If you ever meet Jamie, expect his knowledge of car parts both inside and outside the realm of Mitsubishi to be as unassuming on the surface as the car in this video. He has true talent. Finds peace and happiness in a junkyard full of decay, and skills that create useful high-performance art from what many consider rubbish. Because he's already taken time walking around with parts from one car and bolting them on to others to see if they'll fit, worked as a machinist's apprentice rebuilding everything under the sun, and done the tech work to analyze failures in all of it, he's often my go-to guy for advice when things aren't working correctly. Many times he's come through for me in a pinch and shed light on something I didn't understand. That goes both for examples in the automotive domain, and in real life when I've hit hard times. Many of my parts for the Colt came from his past builds on various Mitsubishis and Hyundais. In fact... many of my Colt parts have come from this very car. He gave this chassis to somebody, and they returned it later because life didn't let them finish it. I don't think it took even a month once he put his mind to working on it to get it in this state, and it was motorless-and-in-pieces. I can't wait to see these parts get bolted on this car. I think we'll have a new textbook definition of sleeper when he's done.


 


More Videos...


Hyundai Assembly 6 - Manifolds & Turbo
I love music videos. They're so much easier to narrate. I don't want to upset anyone by not providing commentary about what I'm doing or where this build is going... and this is the video where all that stuff comes together. Quite frankly, I missed you. I really enjoy these little talks we share. In this video is a little fabrication, maintenance, comparison and assembly. Un-boxings, cleanup, break-fix... Variety! You know... The stuff that keeps happening as you wrap up any build. It's not a longblock until it has manifolds, and a turbo build has a few more things than just that in order to make it complete. My attention has now turned towards preparing the chassis and accessories for installation and I promise there will be more involved videos following this one for the hardcore auto techs. Whether you're watching or wrenching on this one, all this stage does is create anxiety for wanting to hurry up and finish the install, but don't rush. Do it right! These are the non-reusable parts for the turbo install. ALL of the other part numbers in the video were shown: MF241255 x2 Oil Drain Bolts (upper) MF101229 x2 Oil Drain Bolts (lower) MF660031 x2 Oil Drain Gasket (washer) MR258477 x2 Oil Drain Gasket (flange) MF660064 x2 Oil Feed Crush Washer (turbo) MF660063 x2 Oil Feed Crush Washer (head) MF660065 x4 Coolant Crush Washer (turbo) MD132656 x4 turbo Bolt (M10 x 80 x 1.25mm) MD132933 x8 turbo Spring Washers Thank you all for keeping up with this build. Thanks especially for the kind comments and interest in this project! You guys are the best!





Cylinder Head 204 - Porting & Polishing
This is a first-generation 1992 1.6L Hyundai Elantra small-combustion-chamber head. Thats what it is. It's a J1 Elantra cylinder head. Good luck finding another one like it. (read more)... In Cylinder Head 106 I talked about the mainstream porting theories as they are discussed. We looked at a cylinder head that I have thousands of dollars of professional work performed on, and a bone-stock second-generation head that I didn't port. In this video I just might do something you haven't seen done before. For some, that may be uncomfortable. The port and polish job I perform here is what I think will work best for my current build. This is not an extreme killer port job. What will be different here is where port textures are concerned, I will be following the advice of a reputable source that will remain un-named. You're free to port yours differently than I do in this video, and I give you that out, around the 20 minute marker. The Hyundai is far from being an ultimate-performance build. It's a $400 box of scraps with nothing but time invested. It's perfect for this video. My finished product WILL be an improvement over what I had. I don't yet have access to a flow bench. I still have an achievement to un-lock. As far as you should be concerned with the techniques I employ... without flow numbers there is no evidence of what this will do, but we will gather lots of info from dynp sessions and drag strip time slips. If I could test it on a flow bench, I would. There are MANY, and when I say many, I mean thousands of flame war mongering pirates floating around on rough seas with a hair trigger cannon finger itching to fire if you port a head any differently than what the herd mentality says to do while porting a cylinder head. I cover the herd mentality because it has merit. It's been tested. Tried and true. But I don't follow it to the letter of the law. I'm definitely not here to de-bunk it. I would port a cylinder head differently for each build based on how that engine was used. There's an extremely valid reason why relating to air speed. It's not the texture of a port that maximizes the effect of fuel atomization, but the velocity of the air running through an x or y sized valve. The driving factor in this is the piston speed. I'm not going to give you the technical information, but will refer you to information about the Lovell factor. There's a better description of this in the links below, and even a calculator to help you find your engine's sweet spot. Why the Lovell factor is important: https://www.highpowermedia.com/blog/3346/the-effect-of-valve-size Lovell gas factor calculator: http://www.rbracing-rsr.com/lovellgascalc.html Only people who have flow testing equipment know for sure what really works and have the capability to produce a perfectly-matched port job for the ultimate performance build. Those guys know the definition of ultimate, and THEY are floating below the water Aegis-class submarines ready to blow your comment up if you don't know what you're talking about. They don't care if you're an armchair mechanic or a herd of pirates. I will say, they're zoomed in pretty close on me right now, and I'm expecting to take a few hits. My work will be tested based on Dyno and drag strip performance, and the results will be posted here. Fortunately, those kinds of videos are a WHOLE LOT EASIER TO MAKE!!!





Hyundai Assembly 5 - Fighting The Valve Clearance
In previous videos I showed the 2 factors that really need to be scrutinized. Valve clearance and how you degree your camshafts. Of course we got sidetracked with plenty of other tips and tricks but I wanted to upload this video to illustrate that the process really isn't as easy as the animations, demonstrations and explanations make it look. The reasoning is sound, but the work to execute it can be very tedious. Setting up the valvetrain on this engine was very tedious. I say "was" because following this video, we can put that whole topic to bed. This is what it took. Not many people have the patience to deal with this, and I wanted to showcase here for those who are at the peak of their frustration with their builds. This kind of stuff can happen to anyone. Let my pain and suffering help you not feel so all alone. My apologies for the lack of new groundbreaking technical info. It's not a complicated task to install ARP head studs, and that was my plot twist. There are a couple of hurdles you may encounter depending on the production year of your engine, but they're well illustrated in this video. I'm not sure if their installation warrants a video all unto itself, but if you feel it does, speak up because I have 3 more engines to build. I can still do it. I just wanted to demonstrate that progress is being made on this, and despite the long breaks between uploads, a LOT is going on behind the scenes. This was 20 hours of repetitive work and I hope it's at least mildly entertaining. For me, this was the most boring video I've ever edited here because I had to re-live the same steps so many times, over and over again. I could very easily have inserted an hour of it in the wrong place and nobody would ever have known because it all looks the same. The text overlays are there only so you can be aware of what's different. A voiceover would have been pointless because the techniques illustrated are discussed ad-nauseum in the Cylinder Head 205 and 206 videos. The valve cover gasket installation process was covered in "Valve Cover Modification and Polishing", and the discussion about compression ratios is explained in "Calculate Your Compression Ratio". If you like the job the parts washer did, check out my DIY parts washer video. ;) Cylinder Head 205 https://www.youtube.com/watch?v=wbWWCKPuZG4 Cylinder Head 206 https://www.youtube.com/watch?v=4s2X3VUwADA Valve Cover Modification and Polishing https://www.youtube.com/watch?v=NiIi9EljLSk Calculate Your Compression Ratio https://www.youtube.com/watch?v=bWze92nt9OU





Hyundai Elantra 4g63 Shortblock Assembly
HOLD ON TIGHT! HERE WE GO! We begin the blueprint and assembly on my 1992 Hyundai Elantra's bastardized 4g63. The parts used in this are from a mash of different brands and models outside of the typical 2.0L 4g63, but the specs and standards I am following for its assembly are for the 2.0L DOHC. If you want to follow along in your service manual to verify what I've done here in this video, the processes we cover here detail pages 11C-95 through 11C-105 of the 1g Overhaul manual. I would prefer you not rip them from the binding and throw them away, relying only on this video for instruction... but rather use this video as a motivational guide, and as a demonstration of the techniques involved in those sections. You gotta do the cooking by the book. I never had any intention of making instructional videos on this particular car, but after it blew up I slowly realized it's actually a better case study for how a 4g63 ticks than anything else in my driveway. There are several reasons for this. One being that it's a mix of parts that shouldn't be bolted together, and the other is that many of you watching my videos aren't trying to build a 600hp engine out of aftermarket parts. You're trying to put back together what used to be your daily driver. This car covers those bases. Don't think for a second I won't go through this same trouble and level of detail for the GSX. I will. When I do, having this information in this video will give you a better understanding on how and why I do things the way I do when I get there. This was the shortest I could condense this video. I've never uploaded a video this long, and I hope I never have to do it again. It took a month to create on cutting-edge equipment, 16 hours to export, and 9 hours for YouTube to process. My script for the voiceover is 6 times longer than the whole script for the movie Pootie Tang. 6 times. Longer. Than a Hollywood movie.





Install Clutch in a 1g Turbo DSM swapped Elantra
You guys asked for an update on a different project. I've been working on the GSX since November and this is one I could squeeze out without getting in the way of other projects. TRADE YA needs a clutch. It needs some other things, too, but I'm starting with the clutch. In this video I stay on point with the used-or-junkyard-parts build theme. This car doesn't deserve new parts and I've done all of this before, just never in one video. I need something to run at the track while I'm waiting for parts, polishing and machining. I'm closest to having that happening with the Elantra right now so let's get this over with. Consider this the cliff notes of the transmission series, and another step towards making a free car built from used parts run 12's.





First ebay 20g drag passes
I made 2 passes. On the first one, nearly everything that could go wrong did. But I'm a persistent bastard. I fixed it all, found everybody and then made this run. It wasn't until after I got home that I realized I had no in-car video footage of the first run when I broke despite having set it up... I kicked the alternator belt off no-lift-to-shifting into 4th gear around 800 feet and coasted to a 13.3 at 82mph against a 10 second Mustang. Overheating with no power steering I limped it back and put the belt back on, only burning myself 9 times, and then got back out and made this run. The guys in front of us broke, too. I guess it was contagious?

This run is on 93 octane pump gas.

I shouldn't have been in such a hurry. It left me a little unprepared. You learn things about other things while doing things--is the best I can explain it. It didn't knock at all, so clearly the new injectors are working fine... but I didn't take time to burp the coolant system, so it ran hot. My alternator belt was loose, and it bailed on me. I was focusing on explaining the video (I deleted that scene from frustration) rather than putting the car back together, and failed to plug in a very important sensor. I would have caught it, but didn't get a chance to look at the logs until I got home. I have to operate so many pieces of equipment in addition to actually driving that it's very distracting.

The guy in my second race had a beautiful 1967 Dodge Dart, and he was a very good sport! It was a great race where adrenaline is involved, and I was focused but wary of whether or not the alternator belt would stay on. I really appreciate the guys that keep old muscle alive. That car's almost 50 years old. That's making history right there... He cut a great 60 foot after they cleaned up the track, but I wish that car didn't break in his lane prior to his pass if it was a problem for his run.

I tried to leave nothing out and keep it short & sweet. I was lucky to have a track-side cameraman for the second race. Thanks Taylor! Having that sensor plugged in would have left me much more confident in the log data and offer a much better assessment of this turbo, but it is what it is. Here it is...





Hyundai 4g63 Assembly Part 2
Continued progress on the Hyundai build. I've covered most of this before in detail, so I'll save you the fancy narrative. The torque settings are in both the info below, and the video shown on the wrench. You will see this process again here, and each time new aspects of assembly tools and materials will be used. SPECIAL THANKS TO ROJODELCHOCOLATE for the audio track. Oil Pan Bolts 18 7 M6 x12 5'lbs MD012109 2 7 M6 x8 5'lbs MD167134 (some cars use 10mm shorties but 8mm will work) 1g Front Case Bolts qty/GR/DIA/length/torque/part# 4 7 M8 x20 17'lbs MF140225 1 7 M8 x25 17'lbs MF140227 1 7 M8 x40 17'lbs MF140233 1 4 M10 x30 22'lbs MF140062 (6-bolt) 1 7 M8 x40 17'lbs MF140233 (7-bolt) 1g oil pump housing bolts 5 4 M8 x20 12'lbs MF140025 (4qty for 7-bolt and add 1 MD141302 screw) 1 10 M8 x16 27'lbs MD040758 (Balance/Stub shaft bolt) Oil Pump Sprocket Nut 1 11 M10 x 40'lbs MD095237 *use Loctite 1g oil filter housing bolts (that I used w/6-bolt water-cooled OFH) 2 7 M8 x40 14'lbs MF241261 1 7 M8 x20 14'lbs MF140225 1 7 M8 x55 14'lbs MF241264 1 7 M8 x65 14'lbs MF241266 1g Rear Main Seal Housing Bolts 5 7 M6 x16 10'lbs MF140205 (6-bolt) 5 7 M6 x14 10'lbs MF140204 (7-bolt) 1g Timing Tesnsioner Bolts 2 7 M8 x51 17'lbs MD129350 (6-bolt) 2 7 M8 x55 17'lbs MD190987 (7-bolt) 1g Timing Tensioner Arm Bolt 1 8 M8 x16 16'lbs MF241251 Bolt 1 x x x x MD129421 Washer Flywheel bolts 6 11 M12 x22.5 98'lbs MD040557* (ALL Manual transmission 6-bolt cars) 7 11 M12 x21.5 98'lbs MD302074 (ALL Manual transmission 7-bolt turbos) * Part substitution # 2795A956 Crank Sprocket Bolt & Washer 1 11 M14 x40 87'LBS MD074255 CRANKSHAFT CENTER BOLT 1 x M14 x14.5 MD012455 CRANKSHAFT WASHER For gasket, seal and service parts information, please refer to my 6-bolt 4g63 shortblock rebuild parts video: https://www.youtube.com/watch?v=ofWnFXkix3w For timing belt service parts information and tools, please refer to my 4g63 Timing Belt Parts video: https://www.youtube.com/watch?v=BN7TOVrkUNQ In 29 and 3/4 minutes I offer a detailed explanation of how to do a 6-bolt AND 7-Bolt 4g63 Front Case & Oil Pump Rebuild: https://www.youtube.com/watch?v=DPhyazI1fYc For 33 minutes I cover every oil filter housing including servicing information, rebuilding, modifying the oil filter housing, and the unabridged description of how oil pressure works in my 4g63 Oil Filter Housings video: https://www.youtube.com/watch?v=X88tw1UFs_M





More ebay 20g drag passes
Trolled by mother nature. I thought plugging in my o2 sensor might make a difference. Scarily that's not how things worked out. My fuel trims are all jacked up with or without it. Airflow counts are down. I have more to do to this thing, but in an effort to keep things real, I'm uploading what happened and what I found in the logs. The PRIMARY reason for racing is development of both self and your equipment. If your goal is to have an awesome street car, you can't fully-achieve that goal without rigorous testing where numbers and facts are clearly evident. You JUST CAN'T do that on the STREET. There are no numbers on the street, no measurement of a baseline nor any improvements you might make. There's no measurement of a drivers' skill outside of, "did you win or didn't you?" I didn't come to the track with the expectation of MY driving needing to be improved. I was simply getting numbers, so I wasn't a tree-nazi like I was in the Friday Night No-Lift-To-Shift video. There was more incentive for me to just not red-light and see what she'll do. This evening I didn't feel like the track crew were on their A-game. Sometimes they held staged cars for an inordinately long period of time... which once I'm staged, I'm on the rev limiter, and once they left me there awaiting the tree for over 20 seconds, heating my car up and leaving me disadvantaged out of the hole. Other times they treated the starting lanes, dried off my opponent's side but not mine, not giving instruction to hold or wait. In fact, one guy was signaling me forward while another crew member was standing in front of my car spraying the lane. What do you expect for only $15? I'm grateful for them, but the communication could stand improvement over what I saw tonight. Perhaps I'm just a bit miffed with my setup and looking for someone else to blame? The track officials certainly don't deserve any for how it ran this night.





4g63 Block Oil Gallery Mod
This modification is intended to improve your 4g series engine's oil delivery. People frequently discover large chunks of flash in their engine's main oil gallery. It's because the galleries are part of the cast, they're not machined into the block. There is also a very rough sharp edge where the main oil gallery is bored into the block, and oil must make a slightly greater-than 90° turn in order to begin its course to the parts it lubricates. Both of these conditions cause turbulence in the oil flow. My goal in this video is to eliminate as much of that as I can. This is a cheap and easy modification if you have the tools, and the patience. Any engine with cast-in oil galleries could probably benefit from this. Be careful not to cut into the high pressure oil gallery or else you will circulate un-filtered oil to the #1 main, oil pump, and rear balance shaft. You will also deprive the rest of the engine the oil pressure it needs to operate. So in short, punch a hole in that and it's trash. I did this my way, everyone may choose to do this a different way. I just wanted to make this video to raise awareness. Also, there's a great thread on DSMtuners about this. Pictures and everything. Written by a machinist and friend of the DSM community. Go give him some reps because he's posted a lot of great info about the DSM oil system over the years. http://www.dsmtuners.com/forums/articles-engine-fuel/452546-4g63-block-oili ng-mod.html





Friday Night "Street" challenge.
Racing trailer queens at Richmond Dragway's so-called "street" event again. Making a few passes with the Hyundai Elantra to illustrate a point. Someone asked about timeslips recently and I wanted to show one of the types of information you can gain from examining what's on it. Information about yourself, and your car. How well you're driving it, and how well your equipment is working for you. I built it up with the current video explaining the 60' time measurement while installing compound tires. I figured that timing was appropriate since tires have everything to do with traction and acceleration. The 60' is all about maximizing acceleration over the 1st 60 feet of the track. The results of running different 60' times show up differently at the end of the track. A FWD, RWD and AWD car will exhibit different characteristics based on contact patches, weight distribution and rotating mass associated with each setup. But FWD is by far the most challenging to deal with getting up out of the hole. Mastering the launch with your car means more at the track than making all the horsepower in the world at once. Getting it down takes practice. Here's a quick guide for how to set your expectations. So if drag racing is your thing... always be convinced you could do it better, and never stop trying to get there.





lancer evo build 4g63





Jafro's Hyundai Elantra Surprise
There are some things you can't put a price on. I'm not just talking about the Hyundai. I'm talking about Jamie. I have the best friends in the world. Look what Jamie just did for all of your entertainment. He literally donated it to me to play with on this channel. This isn't just for me. Think about it. It's the only FWD DSM in my driveway, and the only one I'm likely to have. With this combination of parts, I could not have a greater challenge making this car stick. Because right now it doesn't at all. Torque steer ends at about 5700 RPMs in third gear. Boost is instantaneous. This car could never make good use of any larger of a turbo. I'm convinced with the right combo of tricks to gain timing and tweaks to make it stick, and that it will run deep into the 12's just like it is. This car is a kick in the pants to drive. A rolling burnout. Be careful with that downshift.





Grinding Oil Return Channels
I started cleaning the rust out, and got carried away. I didn't want to do as extensive of a cleanup job as I did on the GSX, but still wanted to make improvements because of the kinds of oil-related problems it experienced. There's a method to this madness. It will make more sense once I get around to bolting the oil pan back on. The techniques in this video are things I had to do right now if I was going to do them at all. Some of them really needed to be done anyway. You really don't see people do these tricks on imports. Just because you don't see it, it doesn't mean it can't help. I hope you enjoyed the motor oil drag races in the middle of the video. They speak for the science behind this mod... without having to get all scientific. Those results speak clearly for themselves, and there's plenty of chances to get scientific as the Glyptal treatment of the GSX is completed. In this video... I used steel wire cup brushes for both an air DIY grinder, and a Dremel to remove the rust. I used a cone-shaped carbide double-cut burr to smooth the crankcase. I polished the crankcase with coarse and medium sanding rolls for both an air DIY grinder and a Dremel. I used a 1/4" ball carbide double-cut burr to grind the channel. I used a pack of Harbor Freight #95947 10-Piece Tube Brush Kit. http://www.harborfreight.com/10-piece-tube-brush-kit-95947.html





Cylinder Head 206 - Valve Clearance (& LSA)
This video is the companion and continuation video for Cylinder Head 205. In Cylinder Head 205 we covered the tools and technique for setting valve timing versus the factory-recommended specifications. It didn't work, thus; this video. How do I know it didn't work? Watch this video. The reason this is a companion video is because anyone changing their valve timing must also CHECK their valve clearance or risk bending valves. If I can install aftermarket cams, then I have made significant changes to my valve clearance. If I move cam gears on an engine that was previously running, then I have made significant changes to my valve clearance. If I have milled my head or block, I have made significant changes to my valve clearance. If I have installed larger valves, I have made significant changes to my valve clearance. Mitsubishi doesn't build a whole lot of wiggle room into their valvetrains. They keep the valves pretty tight to maximize performance and a 4g63 IS an interference engine. Note that if you follow the recommendations in this video and damage your valvetrain that I am not responsible. Here I demonstrate all of the techniques to ensure that damage never occurs because these tests are performed PRIOR to the engine ever starting, and prove that clearance is adequate for THE PARTS I SHOW HERE ON CAMERA. There can be components installed in other rotating assemblies that require additional clearance to be built into your valve clearance such as aluminum rods, or other alloys employed in the casting and forging of rotating assembly parts and valves. I strongly urge you to check with those manufacturers for their recommendations regarding thermal expansion, stretch, bounce rocker gap or float prior to making any adjustments, and use this video only as a documentation of my experience. In other words, it's my opinion. What works in your engine will likely be very different from mine, but the tests and the math shown here will work the same with your build. To find your intake valve clearance... Add your intake valve opening degrees (btdc) to your intake valve closing degrees (abdc) to 180°. IO + IC + 180 = DURATION DURATION ÷ 2 = LOBE CENTERLINE LOBE CENTERLINE - IO = INSTALLED INTAKE CENTERLINE To find your Exhaust valve clearance... Add your Exhaust valve opening degrees (bbdc) to your intake valve closing degrees (atdc) to 180°. EO + EC + 180 = DURATION DURATION ÷ 2 = LOBE CENTERLINE LOBE CENTERLINE - EC = INSTALLED Exhaust CENTERLINE To get your Lobe Separation Angle, ADD your INSTALLED INTAKE CENTERLINE to your INSTALLED Exhaust CENTERLINE and divide that result by 2. Intake Centerline + Exhaust Centerline ÷ 2 = LSA Tight Lobe Separation Angles * MOVE TORQUE LOWER IN THE POWER BAND * INCREASE MAXIMUM TORQUE OUTPUT * INCREASE CYLINDER PRESSURE * INCREASE CRANKING COMPRESSION * INCREASE EFFECTIVE COMPRESSION * INCREASE COMBUSTION CHAMBER SCAVENGING EFFECT * SHORTEN YOUR POWER BAND * REDUCE IDLE VACUUM! * REDUCE IDLE STABILITY * INCREASE LIKELIHOOD OF KNOCK! * INCREASE OVERLAP * DECREASE PISTON TO VALVE CLEARANCE! Wide Lobe Separation Angles * MOVE TORQUE HIGHER IN THE POWER BAND * DECREASE MAXIMUM TORQUE OUTPUT * LENGTHEN YOUR POWER BAND * DECREASE CYLINDER PRESSURE * DECREASE LIKELIHOOD OF KNOCK * DECREASE CRANKING COMPRESSION * DECREASE EFFECTIVE COMPRESSION * INCREASE IDLE VACUUM * IMPROVE IDLE STABILITY * DECREASE OVERLAP * DECREASE COMBUSTION CHAMBER SCAVENGING EFFECT * INCREASE PISTON TO VALVE CLEARANCE There's more that I want to say about Lobe Separation Angle (LSA). If you're tuning a DOHC engine with cam gears, you're very lucky to go through all this trouble. The pushrod and SOHC crowd can't change their lobe separation angles without replacing their camshaft, and on many engines that means removing the cylinder heads. On a 4g63 with adjustable gears, you loosen the lock bolts, turn, lock it back down and you've adjusted your LSA. This is a luxury which if you've never had to build a SOHC or a pushrod engine and install camshafts that you take for granted. DOHC tuning permits the ability to alter the opening and closing events of the valves independently of one another and perfect the valve timing during tuning without having to completely remove and replace the valvetrain. What this also means is that the pushrod crowd needs to know and understand a lot more about their camshaft profiles prior to making their purchase as we [the DOHC crowd] do. They have to be on their A-game when they drop the coin on a new cam or else things get expensive really quick. Lobe separation angle says more about how camshafts behave than duration and lift, but all 3 should be carefully scrutinized when you're making that determination. Yes, I did actually animate my engine's valve timing exactly the way HKS said to set it up. Yes those are all actual photos of my parts. Yes that was the biggest Photoshop file I've ever created.





modification colt swap 4g63 turbo 2010
modification colt 4g63t





Which car is faster? Which Car is Faster?




Similar 1/4 mile timeslips to browse:

1994 Hyundai Elantra GT42 Turbo: 12.201 @ 123.030
Rick Inacio, Engine: 4g63, Turbos: GT42 Tires: M/T 26


1992 Hyundai Elantra : 12.960 @ 108.420
Doug Elfman, Engine: 4g63, Supercharger: no Turbos: 14b Tires: mt street slicks


2002 Hyundai Elantra GT: 14.965 @ 96.247
Steve, Engine: 2.0l DOHC, Supercharger: na Turbos: na Tires: hankook


2003 Hyundai Elantra GLS: 15.510 @ 89.640
FordFasteRR, Engine: 2.0L Twin Cam, Tires: Yokohama AVS ES-100


2014 Hyundai Elantra GT: 16.410 @ 84.510
MT, Engine: Front Engine, FWD I-4, aluminum block/head,


2011 Hyundai Elantra Limited: 16.910 @ 84.110
ET, Engine: Dohc 16v - valve inline 4: 148 horsepower, Tires: Continental ContiProContact 215/45R-17 87H


1999 Hyundai Elantra GL: 17.343 @ 80.920
Paul,


 


©2014 DragTimes - Disclaimer - Contact Us